Steve Butler has authored 36 sequences. Here are the ten most recent ones:
A260575
Number of ways to place 2n rooks on n X n board, 2 rooks in each row and each column, multiple rooks in a cell allowed, and exactly 3 rooks below the main diagonal.
Original entry on oeis.org
4, 114, 1492, 13992, 109538, 769632, 5050616, 31702275, 193204684, 1154354559, 6805263818, 39756392269, 230829718918, 1334626765852, 7694795830792, 44279453377166, 254475676808510, 1461211112505546, 8385454709982584, 48102877501302765, 275868835046218560
Offset: 3
-
Rest[Rest[Rest[CoefficientList[Series[-(625 x^12 - 2206 x^11 + 4397 x^10 - 6648 x^9 + 7058 x^8 - 4674 x^7 + 1748 x^6 - 300 x^5 + 2 x^4 + 4 x^3)/(2600 x^13 - 21100 x^12 + 77590 x^11 - 171025 x^10 + 251874 x^9 - 261466 x^8 + 196626 x^7 - 108337 x^6 + 43682 x^5 - 12713 x^4 + 2592 x^3 - 350 x^2 + 28 x - 1), {x, 0, 33}], x]]]] (* Vincenzo Librandi, Jul 30 2015 *)
A255305
The largest number that cannot be written as a sum of squarefree numbers that are the product of n primes.
Original entry on oeis.org
6, 23, 299, 3439, 51637, 894211
Offset: 1
a(1)=6 because each number that is 7 or larger can be written as the sum of distinct primes.
a(2)=23 because the squarefree numbers less than or equal to 23 that are the product of two primes are {6, 10, 14, 15, 21, 22} and there is no way to add some subset of these together to get 23; on the other hand every number greater than 23 can be so represented, i.e., 24=10+14, 25=10+15, 26=26, 27=6+21, 28=6+22, 30=6+10+14, and so on.
A254152
Number of independent sets in the generalized Aztec diamond E(L_9,L_{2n-1}).
Original entry on oeis.org
1, 32, 1351, 62501, 2976416, 142999897, 6888568813, 332097693792, 16014193762579, 772279980131297, 37243762479698928, 1796118644459454733, 86619824190256627593, 4177339899819872607008, 201457018240598757372431, 9715496740529686006497709, 468541027322402116068858304
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
- Index entries for linear recurrences with constant coefficients, signature (74,-1450,10672,-34214,50814,-34671,9772,-936).
a(10)-a(11) corrected and a(12) and beyond from
Andrew Howroyd, Jan 15 2020
A254151
Number of independent sets in the generalized Aztec diamond E(L_7,L_{2n-1}).
Original entry on oeis.org
1, 16, 314, 6556, 139344, 2976416, 63663808, 1362242592, 29151501760, 623849225024, 13350628082560, 285709494797952, 6114316283697408, 130849237522680064, 2800235203724240384, 59926350645878761984, 1282452098548524184576, 27445078313878468469760
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
- Index entries for linear recurrences with constant coefficients, signature (30,-202,396,-248,32).
-
LinearRecurrence[{30,-202,396,-248,32},{1,16,314,6556,139344},20] (* Harvey P. Dale, May 31 2024 *)
-
Vec((1 - 14*x + 36*x^2 - 28*x^3 + 4*x^4)/(1 - 30*x + 202*x^2 - 396*x^3 + 248*x^4 - 32*x^5) + O(x^20)) \\ Andrew Howroyd, Jan 16 2020
A254150
Number of independent sets in the generalized Aztec diamond E(L_5,L_{2n-1}).
Original entry on oeis.org
1, 8, 73, 689, 6556, 62501, 596113, 5686112, 54239137, 517383521, 4935293524, 47077513469, 449070034657, 4283656560248, 40861585458553, 389776618229969, 3718059650555596, 35466384896440661, 338312070235103473, 3227141903559443792, 30783545081553045457
Offset: 0
A254127
The number of tilings of an n X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are of size (1 X i) or (i X 1) with 1<=i<=n.
Original entry on oeis.org
1, 1, 7, 257, 50128, 50796983, 264719566561, 7063448084710944, 963204439792722969647, 670733745303300958404439297, 2384351527902618144856749327661056, 43263422878945294225852497665519673400479, 4006622856873663241294794301627790673728956619649
Offset: 0
a(2)=7 for the following 7 tilings:
_ _ _ _ _ _ _ _ _ _ _ _ _ _
|_|_| |_ _| |_|_| | |_| |_| | |_ _| | | |
|_|_| |_|_| |_ _| |_|_| |_|_| |_ _| |_|_|
-
def matrix_entry(L1, L2, n):
tally=0
for i in range(n-1):
if (not i in L1) and (not i in L2) and (not i+1 in L1) and (not i+1 in L2):
tally+=1
return 2^tally
def a(n):
index_set={}
counter=0
for C in Combinations(n):
index_set[counter]=C
counter+=1
current_v=[0]*counter
current_v[0]=1
for t in range(n):
new_v=[0]*counter
for i in range(counter):
for j in range(counter):
new_v[i]+=current_v[j]*matrix_entry(index_set[I], index_set[j], n)
current_v=new_v
return current_v[0]
for n in range(0, 10):
print(a(n), end=', ')
A254126
The number of tilings of a 5 X n rectangle using integer length rectangles with at least one length of size 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1, 5 X 1.
Original entry on oeis.org
1, 16, 533, 22873, 1064576, 50796983, 2441987149, 117656540512, 5672528575545, 273541357254277, 13191518965300160, 636171495829068099, 30680036092304563369, 1479579136691648516016, 71354395560692698401005, 3441147782121276015384833, 165953315828852845775456128
Offset: 0
A254125
The number of tilings of a 4 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1.
Original entry on oeis.org
1, 8, 124, 2408, 50128, 1064576, 22734496, 486248000, 10404289216, 222647030144, 4764694602112, 101966374503680, 2182126445631232, 46698521255409152, 999370260391863808, 21386993399983588352, 457691719382960757760, 9794818132582234683392
Offset: 0
A254124
The number of tilings of a 3 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1.
Original entry on oeis.org
1, 4, 29, 257, 2408, 22873, 217969, 2078716, 19827701, 189133073, 1804125632, 17209452337, 164160078241, 1565914710964, 14937181915469, 142485030313697, 1359157571347928, 12964936038223753, 123671875897903249, 1179699833714208556, 11253097663211943461
Offset: 0
A253953
Numbers that require three steps to collapse to a single digit in base 4 (written in base 4).
Original entry on oeis.org
223, 1213, 2023, 2122, 2203, 2221, 3133, 11113, 12103, 13033, 20023, 20203, 20221, 21202, 22003, 22021, 22201, 22333, 30313, 31033, 31132, 103033, 110113, 111103, 113032, 121003, 200023, 200203, 200221, 202003, 202021
Offset: 1
As an example a(1)=223 (in base 4). There are then three ways to insert plus signs in the first step:
2+23 22+3 2+2+3
This gives the numbers (in base 4) as 31, 31, and 13 respectively. In the second step we have one of the following two:
3+1 1+3
In both cases this gives the number (in base 4) of 10. Finally in the third step we have the following:
1+0
Which gives 1, a single digit, and we cannot get to a single digit in one or two steps. (Note, the single digit that we reduce to is independent of the sequence of steps taken.)
Comments