A254414
Number A(n,k) of tilings of a k X n rectangle using polyominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 8, 29, 29, 8, 1, 1, 16, 124, 257, 124, 16, 1, 1, 32, 533, 2408, 2408, 533, 32, 1, 1, 64, 2293, 22873, 50128, 22873, 2293, 64, 1, 1, 128, 9866, 217969, 1064576, 1064576, 217969, 9866, 128, 1, 1, 256, 42451, 2078716, 22734496, 50796983, 22734496, 2078716, 42451, 256, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 8, 16, 32, ...
1, 2, 7, 29, 124, 533, 2293, ...
1, 4, 29, 257, 2408, 22873, 217969, ...
1, 8, 124, 2408, 50128, 1064576, 22734496, ...
1, 16, 533, 22873, 1064576, 50796983, 2441987149, ...
1, 32, 2293, 217969, 22734496, 2441987149, 264719566561, ...
-
step(v,S)={vector(#v, i, sum(j=1, #v, v[j]*2^hammingweight(bitand(S[i], S[j]))))}
mkS(k)={apply(b->bitand(b,2*b+1), [2^(k-1)..2^k-1])}
T(n,k)={if(k<2, if(k==0||n==0, 1, 2^(n-1)), my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v,S)); vecsum(v))} \\ Andrew Howroyd, Dec 23 2019
A254124
The number of tilings of a 3 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1.
Original entry on oeis.org
1, 4, 29, 257, 2408, 22873, 217969, 2078716, 19827701, 189133073, 1804125632, 17209452337, 164160078241, 1565914710964, 14937181915469, 142485030313697, 1359157571347928, 12964936038223753, 123671875897903249, 1179699833714208556, 11253097663211943461
Offset: 0
A254125
The number of tilings of a 4 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1.
Original entry on oeis.org
1, 8, 124, 2408, 50128, 1064576, 22734496, 486248000, 10404289216, 222647030144, 4764694602112, 101966374503680, 2182126445631232, 46698521255409152, 999370260391863808, 21386993399983588352, 457691719382960757760, 9794818132582234683392
Offset: 0
A254126
The number of tilings of a 5 X n rectangle using integer length rectangles with at least one length of size 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1, 5 X 1.
Original entry on oeis.org
1, 16, 533, 22873, 1064576, 50796983, 2441987149, 117656540512, 5672528575545, 273541357254277, 13191518965300160, 636171495829068099, 30680036092304563369, 1479579136691648516016, 71354395560692698401005, 3441147782121276015384833, 165953315828852845775456128
Offset: 0
Showing 1-4 of 4 results.
Comments