cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A052961 Expansion of (1 - 3*x) / (1 - 5*x + 3*x^2).

Original entry on oeis.org

1, 2, 7, 29, 124, 533, 2293, 9866, 42451, 182657, 785932, 3381689, 14550649, 62608178, 269388943, 1159120181, 4987434076, 21459809837, 92336746957, 397304305274, 1709511285499, 7355643511673, 31649683701868, 136181487974321, 585958388766001, 2521247479907042
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of tilings of a 2 X n rectangle using integer dimension tiles at least one of whose dimensions is 1, so allowable dimensions are 1 X 1, 1 X 2, 1 X 3, 1 X 4, ..., and 2 X 1. - David Callan, Aug 27 2014
a(n+1) counts closed walks on K_2 containing one loop on the index vertex and four loops on the other vertex. Equivalently the (1,1)entry of A^(n+1) where the adjacency matrix of digraph is A=(1,1;1,4). - _David Neil McGrath, Nov 05 2014
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, 0, ...
1, 0, 4, 0, 0, 0, 0, ...
1, 0, 0, 4, 0, 0, 0, ...
1, 0, 0, 0, 4, 0, 0, ...
1, 0, 0, 0, 0, 4, 0, ...
1, 0, 0, 0, 0, 0, 4, ...
...
Take powers of M and extract the upper left term, getting the sequence starting (1, 1, 2, 7, 29, 124, ...). - Gary W. Adamson, Jul 22 2016
From Gary W. Adamson, Jul 29 2016: (Start)
The sequence is N=1 in an infinite set obtained from matrix powers of [(1,N); (1,4)], extracting the upper left terms.
The infinite set begins:
N=1 (A052961): 1, 2, 7, 29 124, 533, 2293, ...
N=2 (A052984): 1, 3, 13, 59, 269, 1227, 5597, ...
N=3 (A004253): 1, 4, 19, 91, 436, 2089, 10009, ...
N=4 (A000351): 1, 5, 25, 125, 625, 3125, 15625, ...
N=5 (A015449): 1, 6, 31, 161, 836, 4341, 22541, ...
N=6 (A124610): 1, 7, 37, 199, 1069, 5743, 30853, ...
N=7 (A111363): 1, 8, 43, 239, 1324, 7337, 40653, ...
N=8 (A123270): 1, 9, 49, 281, 1601, 9129, 52049, ...
N=9 (A188168): 1, 10, 55, 325, 1900, 11125, 65125, ...
N=10 (A092164): 1, 11, 61, 371, 2221, 13331, 79981, ...
... (End)

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=5*a[n-1]-3*a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
  • Magma
    I:=[1,2]; [n le 2 select I[n] else 5*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 17 2014
    
  • Maple
    spec:= [S,{S = Sequence(Union(Prod(Sequence(Union(Z,Z,Z)),Z),Z))}, unlabeled ]: seq(combstruct[count ](spec,size = n), n = 0..20);
    seq(coeff(series((1-3*x)/(1-5*x+3*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 23 2019
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-5x+3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-3},{1,2},30] (* Harvey P. Dale, Nov 23 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x)/(1-5*x+3*x^2)) \\ G. C. Greubel, Oct 23 2019
    
  • Sage
    def A052961_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-3*x)/(1-5*x+3*x^2)).list()
    A052961_list(30) # G. C. Greubel, Oct 23 2019
    

Formula

G.f.: (1-3*x)/(1-5*x+3*x^2).
a(n) = 5*a(n-1) - 3*a(n-2), with a(0) = 1, a(1) = 2.
a(n) = Sum_{alpha=RootOf(1-5*z+3*z^2)} (-1 + 9*alpha)*alpha^(-1-n)/13.
E.g.f.: (1 + sqrt(13) + (sqrt(13)-1) * exp(sqrt(13)*x)) / (2*sqrt(13) * exp(((sqrt(13)-5)*x)/2)). - Vaclav Kotesovec, Feb 16 2015
a(n) = A116415(n) - 3*A116415(n-1). - R. J. Mathar, Feb 27 2019

A254124 The number of tilings of a 3 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1.

Original entry on oeis.org

1, 4, 29, 257, 2408, 22873, 217969, 2078716, 19827701, 189133073, 1804125632, 17209452337, 164160078241, 1565914710964, 14937181915469, 142485030313697, 1359157571347928, 12964936038223753, 123671875897903249, 1179699833714208556, 11253097663211943461
Offset: 0

Views

Author

Steve Butler, Jan 25 2015

Keywords

Comments

Let G_n be the graph with vertices {(a,b) : 1<=a<=5, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.

Crossrefs

Column k=3 of A254414.

Programs

  • PARI
    Vec((1-8*x+5*x^2)/(1-12*x+24*x^2-5*x^3) + O(x^30)) \\ Michel Marcus, Jan 26 2015

Formula

G.f.: (1 - 8*x + 5*x^2)/(1 - 12*x + 24*x^2 - 5*x^3).
a(n) = 12*a(n-1) - 24*a(n-2) + 5*a(n-3) for n > 2. - Colin Barker, Jun 07 2020

A254125 The number of tilings of a 4 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1.

Original entry on oeis.org

1, 8, 124, 2408, 50128, 1064576, 22734496, 486248000, 10404289216, 222647030144, 4764694602112, 101966374503680, 2182126445631232, 46698521255409152, 999370260391863808, 21386993399983588352, 457691719382960757760, 9794818132582234683392
Offset: 0

Views

Author

Steve Butler, Jan 25 2015

Keywords

Comments

Let G_n be the graph with vertices {(a,b) : 1<=a<=7, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.

Crossrefs

Column k=4 of A254414.

Programs

  • PARI
    Vec((1-22*x+86*x^2-92*x^3+16*x^4)/(1-30*x+202*x^2-396*x^3 +248*x^4-32*x^5) + O(x^30)) \\ Michel Marcus, Jan 26 2015

Formula

G.f.: (1 - 22x + 86x^2 - 92x^3 + 16x^4)/(1 - 30x + 202x^2 - 396x^3 + 248x^4 - 32x^5).
a(n) = 30*a(n-1) - 202*a(n-2) + 396*a(n-3) - 248*a(n-4) + 32*a(n-5) for n>4. - Colin Barker, Jun 07 2020

A254126 The number of tilings of a 5 X n rectangle using integer length rectangles with at least one length of size 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1, 5 X 1.

Original entry on oeis.org

1, 16, 533, 22873, 1064576, 50796983, 2441987149, 117656540512, 5672528575545, 273541357254277, 13191518965300160, 636171495829068099, 30680036092304563369, 1479579136691648516016, 71354395560692698401005, 3441147782121276015384833, 165953315828852845775456128
Offset: 0

Views

Author

Steve Butler, Jan 25 2015

Keywords

Comments

Let G_n be the graph with vertices {(a,b) : 1<=a<=9, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.

Crossrefs

Column k=5 of A254414.

Formula

G.f: (1 - 58*x + 799*x^2 - 4041*x^3 + 8286*x^4 - 7357*x^5 + 2660*x^6 - 312*x^7)/(1 - 74*x + 1450*x^2 - 10672*x^3 + 34214*x^4 - 50814*x^5 + 34671*x^6 - 9772*x^7 + 936*x^8).

A254127 The number of tilings of an n X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are of size (1 X i) or (i X 1) with 1<=i<=n.

Original entry on oeis.org

1, 1, 7, 257, 50128, 50796983, 264719566561, 7063448084710944, 963204439792722969647, 670733745303300958404439297, 2384351527902618144856749327661056, 43263422878945294225852497665519673400479, 4006622856873663241294794301627790673728956619649
Offset: 0

Views

Author

Steve Butler, Jan 25 2015

Keywords

Comments

Let R(n) be the set of squares that have vertices at integer coordinates and lie in the region of the plane |x|+|y|<=n+1, and let two squares be independent if they do not share a common edge. Then a(n) is the number of ways to pick a set of independent cell(s) in R(n). (Note R(n) is also known as the Aztec diamond.)

Examples

			a(2)=7 for the following 7 tilings:
   _ _   _ _   _ _   _ _   _ _   _ _   _ _
  |_|_| |_ _| |_|_| | |_| |_| | |_ _| | | |
  |_|_| |_|_| |_ _| |_|_| |_|_| |_ _| |_|_|
		

Crossrefs

Main diagonal of A254414.

Programs

  • SageMath
    def matrix_entry(L1, L2, n):
        tally=0
        for i in range(n-1):
            if (not i in L1) and (not i in L2) and (not i+1 in L1) and (not i+1 in L2):
                tally+=1
        return 2^tally
    def a(n):
        index_set={}
        counter=0
        for C in Combinations(n):
            index_set[counter]=C
            counter+=1
        current_v=[0]*counter
        current_v[0]=1
        for t in range(n):
            new_v=[0]*counter
            for i in range(counter):
                for j in range(counter):
                    new_v[i]+=current_v[j]*matrix_entry(index_set[I], index_set[j], n)
            current_v=new_v
        return current_v[0]
    for n in range(0, 10):
        print(a(n), end=', ')

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 30 2015

A331406 Array read by antidiagonals: A(n,m) is the number of ways to place non-adjacent counters on the black squares of a 2n-1 X 2m-1 checker board.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 17, 8, 1, 1, 16, 73, 73, 16, 1, 1, 32, 314, 689, 314, 32, 1, 1, 64, 1351, 6556, 6556, 1351, 64, 1, 1, 128, 5813, 62501, 139344, 62501, 5813, 128, 1, 1, 256, 25012, 596113, 2976416, 2976416, 596113, 25012, 256, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 16 2020

Keywords

Comments

The array has been extended with A(n,0) = A(0,m) = 1 for consistency with recurrences and existing sequences.
The checker board is such that the black squares are in the corners and adjacent means diagonally adjacent, since the white squares are not included.
Equivalently, A(n,m) is the number of independent sets in the generalized Aztec diamond graph E(L_{2n-1}, L_{2m-1}). The E(L_{2n-1},L_{2m-1}) Aztec diamond is the graph with vertices {(a,b) : 1<=a<=2n-1, 1<=b<=2m-1, a+b even} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1.
All rows (or columns) are linear recurrences with constant coefficients. For n > 0 an upper bound on the order of the recurrence is A005418(n-1), which is the number of binary words of length n up to reflection.
A stronger upper bound on the recurrence order is A005683(n+2). This upper bound is exact for at least 1 <= n <= 10. This bound follows from considerations about which patterns of counters in a row are redundant because they attack the same points in adjacent rows. For example, the pattern of counters 1101101 is equivalent to 1111111 because they each attack all points in the neighboring rows.
It appears that the denominators for the recurrences are the same as those for the rows and columns of A254414. This suggests there is a connection.

Examples

			Array begins:
===========================================================
n\m | 0  1    2      3        4          5            6
----+------------------------------------------------------
  0 | 1  1    1      1        1          1            1 ...
  1 | 1  2    4      8       16         32           64 ...
  2 | 1  4   17     73      314       1351         5813 ...
  3 | 1  8   73    689     6556      62501       596113 ...
  4 | 1 16  314   6556   139344    2976416     63663808 ...
  5 | 1 32 1351  62501  2976416  142999897   6888568813 ...
  6 | 1 64 5813 596113 63663808 6888568813 748437606081 ...
  ...
Case A(2,2): the checker board has 5 black squares as shown below.
      __    __
     |__|__|__|
      __|__|__
     |__|  |__|
If a counter is placed on the central square then a counter cannot be placed on the other 4 squares, otherwise counters can be placed in any combination. The total number of arrangements is then 1 + 2^4 = 17, so A(2, 2) = 17.
		

Crossrefs

Main diagonal is A054867.

Programs

  • PARI
    step1(v)={vector(#v/2, t, my(i=t-1); sum(j=0, #v-1, if(!bitand(i, bitor(j, j>>1)), v[1+j])))}
    step2(v)={vector(#v*2, t, my(i=t-1); sum(j=0, #v-1, if(!bitand(i, bitor(j, j<<1)), v[1+j])))}
    T(n,k)={if(n==0||k==0, 1, my(v=vector(2^k, i, 1)); for(i=2, n, v=step2(step1(v))); vecsum(v))}
    { for(n=0, 7, for(k=0, 7, print1(T(n,k), ", ")); print) }

Formula

A(n,m) = A(m,n).

A254458 Number of tilings of a 6 X n rectangle using polyominoes of shape I.

Original entry on oeis.org

1, 32, 2293, 217969, 22734496, 2441987149, 264719566561, 28778500622048, 3131382012183077, 340819280011906449, 37097936406550231392, 4038192819517826461181, 439569960022854881087873, 47848695174956866013911072, 5208498569279829885262307157
Offset: 0

Views

Author

Alois P. Heinz, Jan 30 2015

Keywords

Comments

A polyomino of shape I is a rectangle of width 1.

Crossrefs

Column k=6 of A254414.

Formula

G.f.: (1 - 153*x + 6777*x^2 - 132415*x^3 + 1336362*x^4 - 7606262*x^5 + 25527903*x^6 - 51325185*x^7 + 61507605*x^8 - 42648785*x^9 + 16029360*x^10 - 2890728*x^11 + 181440*x^12)/(1 - 185*x + 10404*x^2 - 259107*x^3 + 3361183*x^4 - 24886632*x^5 + 110360811*x^6 - 299572675*x^7 + 499926324*x^8 - 508443601*x^9 + 305734685*x^10 - 101727600*x^11 + 16409736*x^12 - 907200*x^13). - Andrew Howroyd, Dec 23 2019

A254607 Number of tilings of a 7 X n rectangle using polyominoes of shape I.

Original entry on oeis.org

1, 64, 9866, 2078716, 486248000, 117656540512, 28778500622048, 7063448084710944, 1735575086258267968, 426602245391808219456, 104870171042459607741312, 25780811901305515395438592, 6337913024506813766449064064, 1558108119479642808250383381248, 383044676600298851289615284801792
Offset: 0

Views

Author

Alois P. Heinz, Feb 02 2015

Keywords

Comments

A polyomino of shape I is a rectangle of width 1.

Crossrefs

Column k=7 of A254414.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 23 2019

A334617 a(n) is the number of ways to tile a size n staircase polyomino with staircase polyominoes.

Original entry on oeis.org

1, 2, 8, 57, 806, 20840, 1038266, 97115638, 17213517207, 5768580741287
Offset: 1

Views

Author

Peter Kagey, Sep 08 2020

Keywords

Comments

A size-n staircase polynomo is a polyomino consisting of n left-aligned rows in increasing length of 1, 2, ..., n. Rotations of staircase polyominoes are also polyominoes.

Examples

			For n = 3 the a(3) = 8 tilings are:
+---+          +---+          +---+          +---+
|   |          |   |          |   |          |   |
+---+---+      +   +---+      +---+---+      +---+---+
|   |   |      |       |      |   |   |      |   |   |
+---+---+---+, +---+---+---+, +   +---+---+, +---+   +---+,
|   |   |   |  |   |   |   |  |       |   |  |   |       |
+---+---+---+  +---+---+---+  +---+---+---+  +---+---+---+
+---+          +---+          +---+          +---+
|   |          |   |          |   |          |   |
+---+---+      +---+---+      +---+---+      +   +---+
|       |      |       |      |   |   |      |       |
+---+   +---+, +   +---+---+, +---+   +---+, +       +---+.
|   |   |   |  |   |   |   |  |       |   |  |           |
+---+---+---+  +---+---+---+  +---+---+---+  +---+---+---+
		

Crossrefs

Extensions

a(8) from Seiichi Manyama, Sep 09 2020
a(9)-a(10) from Bert Dobbelaere, Sep 12 2020
Showing 1-9 of 9 results.