cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A006012 a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - 2*a(n-2), n >= 2.

Original entry on oeis.org

1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520, 107616, 367424, 1254464, 4283008, 14623104, 49926400, 170459392, 581984768, 1987020288, 6784111616, 23162405888, 79081400320, 270000789504, 921840357376, 3147359850496
Offset: 0

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 4, s(2n) = 4. - Herbert Kociemba, Jun 12 2004
a(n-1) counts permutations pi on [n] for which the pairs {i, pi(i)} with i < pi(i), considered as closed intervals [i+1,pi(i)], do not overlap; equivalently, for each i in [n] there is at most one j <= i with pi(j) > i. Counting these permutations by the position of n yields the recurrence relation. - David Callan, Sep 02 2003
a(n) is the sum of (n+1)-th row terms of triangle A140070. - Gary W. Adamson, May 04 2008
The binomial transform is in A083878, the Catalan transform in A084868. - R. J. Mathar, Nov 23 2008
Equals row sums of triangle A152252. - Gary W. Adamson, Nov 30 2008
Counts all paths of length (2*n), n >= 0, starting at the initial node on the path graph P_7, see the second Maple program. - Johannes W. Meijer, May 29 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U_1 and U_3 be the unit-primitive matrices (see [Jeffery])
U_1 = U_(8,1) = [(0,1,0,0); (1,0,1,0); (0,1,0,1); (0,0,2,0)] and
U_3 = U_(8,3) = [(0,0,0,1); (0,0,2,0); (0,2,0,1); (2,0,2,0)]. Then a(n) = (1/4) * Trace(U_1^(2*n)) = (1/2^(n+2)) * Trace(U_3^(2*n)). (See also A084130, A001333.) (End)
Pisano period lengths: 1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012
a(n) is the first superdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Conjecture: With offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). For example, the 4 permutations of [4] not counted by a(4) are 1324, 1423, 2314, 2413. - David Callan, Aug 27 2014
The conjecture of David Callan above is correct - with offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). - Yonah Biers-Ariel, Jun 27 2017
From Gary W. Adamson, Jul 22 2016: (Start)
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, ...
1, 0, 3, 0, 0, 0, ...
1, 0, 0, 3, 0, 0, ...
1, 0, 0, 0, 3, 0, ...
1, 0, 0, 0, 0, 3, ...
...
Take powers of M, extracting the upper left terms; getting the sequence starting: (1, 1, 2, 6, 20, 68, ...). (End)
From Gary W. Adamson, Jul 24 2016: (Start)
The sequence is the INVERT transform of the powers of 3 prefaced with a "1": (1, 1, 3, 9, 27, ...) and is N=3 in an infinite of analogous sequences starting:
N=1 (A000079): 1, 2, 4, 8, 16, 32, ...
N=2 (A001519): 1, 2, 5, 13, 34, 89, ...
N=3 (A006012): 1, 2, 6, 20, 68, 232, ...
N=4 (A052961): 1, 2, 7, 29, 124, 533, ...
N=5 (A154626): 1, 2, 8, 40, 208, 1088, ...
N=6: 1, 2, 9, 53, 326, 2017, ...
... (End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2, 4>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first and fourth elements are larger than the second and third elements. - Sergey Kitaev, Dec 08 2020
a(n-1) is the number of permutations of [n] that can be obtained by placing n points on an X-shape (two crossing lines with slopes 1 and -1), labeling them 1,2,...,n by increasing y-coordinate, and then reading the labels by increasing x-coordinate. - Sergi Elizalde, Sep 27 2021
Consider a stack of pancakes of height n, where the only allowed operation is reversing the top portion of the stack. First, perform a series of reversals of decreasing sizes, followed by a series of reversals of increasing sizes. The number of distinct permutations of the initial stack that can be reached through these operations is a(n). - Thomas Baruchel, May 12 2025
Number of permutations of [n] that are correctly sorted after performing one left-to-right pass and one right-to-left pass of the cocktail sort. - Thomas Baruchel, May 16 2025

References

  • D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms. Birkhäuser, Boston, 3rd edition, 1990, p. 86.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.4.8 Answer to Exer. 8.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006012 n = a006012_list !! n
    a006012_list = 1 : 2 : zipWith (-) (tail $ map (* 4) a006012_list)
    (map (* 2) a006012_list)
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    [n le 2 select n else 4*Self(n-1)- 2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    A006012:=-(-1+2*z)/(1-4*z+2*z**2); # Simon Plouffe in his 1992 dissertation
    with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..7); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{4,-2},{1,2},50] (* or *) With[{c=Sqrt[2]}, Simplify[ Table[((2+c)^n+(3+2c)(2-c)^n)/(2(2+c)),{n,50}]]] (* Harvey P. Dale, Aug 29 2011 *)
  • PARI
    {a(n) = real(((2 + quadgen(8))^n))}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    {a(n) = if( n<0, 2^n, 1) * polsym(x^2 - 4*x + 2, abs(n))[abs(n)+1] / 2}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    Vec((1-2*x)/(1-4*x+2*x^2) + O(x^100)) \\ Altug Alkan, Dec 05 2015
    
  • Python
    l = [1, 2]
    for n in range(2, 101): l.append(4 * l[n - 1] - 2 * l[n - 2])
    print(l)  # Indranil Ghosh, Jul 02 2017
    
  • SageMath
    A006012=BinaryRecurrenceSequence(4,-2,1,2)
    print([A006012(n) for n in range(41)]) # G. C. Greubel, Aug 27 2025

Formula

G.f.: (1-2*x)/(1 - 4*x + 2*x^2).
a(n) = 2*A007052(n-1) = A056236(n)/2.
Limit_{n -> oo} a(n)/a(n-1) = 2 + sqrt(2). - Zak Seidov, Oct 12 2002
From Paul Barry, May 08 2003: (Start)
Binomial transform of A001333.
E.g.f.: exp(2*x)*cosh(sqrt(2)*x). (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*2^(n-k) = Sum_{k=0..n} binomial(n, k)*2^(n-k/2)(1+(-1)^k)/2. - Paul Barry, Nov 22 2003 (typo corrected by Manfred Scheucher, Jan 17 2023)
a(n) = ((2+sqrt(2))^n + (2-sqrt(2))^n)/2.
a(n) = Sum_{k=0..n} 2^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
a(n) = A007070(n) - 2*A007070(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{k=0..n} A147703(n,k). - Philippe Deléham, Nov 29 2008
a(n) = Sum_{k=0..n} A201730(n,k). - Philippe Deléham, Dec 05 2011
G.f.: G(0) where G(k)= 1 + 2*x/((1-2*x) - 2*x*(1-2*x)/(2*x + (1-2*x)*2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: G(0)*(1-2*x)/2, where G(k) = 1 + 1/(1 - 2*x*(4*k+2-x)/( 2*x*(4*k+4-x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 27 2014
a(-n) = a(n) / 2^n for all n in Z. - Michael Somos, Aug 24 2014
a(n) = A265185(n) / 4, connecting this sequence to the simple Lie algebra B_4. - Tom Copeland, Dec 04 2015
From G. C. Greubel, Aug 27 2025: (Start)
a(n) = 2^((n-2)/2)*( (n+1 mod 2)*A002203(n) + 2*sqrt(2)*(n mod 2)*A000129(n) ).
a(n) = 2^(n/2)*ChebyshevT(n, sqrt(2)). (End)

A254414 Number A(n,k) of tilings of a k X n rectangle using polyominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 8, 29, 29, 8, 1, 1, 16, 124, 257, 124, 16, 1, 1, 32, 533, 2408, 2408, 533, 32, 1, 1, 64, 2293, 22873, 50128, 22873, 2293, 64, 1, 1, 128, 9866, 217969, 1064576, 1064576, 217969, 9866, 128, 1, 1, 256, 42451, 2078716, 22734496, 50796983, 22734496, 2078716, 42451, 256, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 30 2015

Keywords

Comments

A polyomino of shape I is a rectangle of width 1.
All columns (or rows) are linear recurrences with constant coefficients. An upper bound on the order of the recurrence is A005683(k+2). This upper bound is exact for at least 1 <= k <= 10. - Andrew Howroyd, Dec 23 2019

Examples

			Square array A(n,k) begins:
  1,  1,    1,      1,        1,          1,            1, ...
  1,  1,    2,      4,        8,         16,           32, ...
  1,  2,    7,     29,      124,        533,         2293, ...
  1,  4,   29,    257,     2408,      22873,       217969, ...
  1,  8,  124,   2408,    50128,    1064576,     22734496, ...
  1, 16,  533,  22873,  1064576,   50796983,   2441987149, ...
  1, 32, 2293, 217969, 22734496, 2441987149, 264719566561, ...
		

Crossrefs

Columns (or rows) k=0-7 give: A000012, A011782, A052961, A254124, A254125, A254126, A254458, A254607.
Main diagonal gives: A254127.
Cf. A005683.

Programs

  • PARI
    step(v,S)={vector(#v, i, sum(j=1, #v, v[j]*2^hammingweight(bitand(S[i], S[j]))))}
    mkS(k)={apply(b->bitand(b,2*b+1), [2^(k-1)..2^k-1])}
    T(n,k)={if(k<2, if(k==0||n==0, 1, 2^(n-1)), my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v,S)); vecsum(v))} \\ Andrew Howroyd, Dec 23 2019

A180148 a(n) = 3*a(n-1) + a(n-2) with a(0)=2 and a(1)=5.

Original entry on oeis.org

2, 5, 17, 56, 185, 611, 2018, 6665, 22013, 72704, 240125, 793079, 2619362, 8651165, 28572857, 94369736, 311682065, 1029415931, 3399929858, 11229205505, 37087546373, 122491844624, 404563080245, 1336181085359, 4413106336322, 14575500094325, 48139606619297
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010

Keywords

Comments

Inverse binomial transform of A052961 (without the leading 1).
For n >= 1, also the number of matchings in the n-alkane graph. - Eric W. Weisstein, Jul 14 2021

Crossrefs

Appears in A180142.
Cf. A000602 (more information on n-alkanes).

Programs

  • Maple
    a:= n-> (<<0|1>, <1|3>>^n. <<2, 5>>)[1,1]:
    seq(a(n), n=0..27);  # Alois P. Heinz, Jul 14 2021
  • Mathematica
    LinearRecurrence[{3, 1}, {5, 7}, 20] (* Eric W. Weisstein, Jul 14 2021 *)
    CoefficientList[Series[(2 - x)/(1 - 3 x - x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 14 2021 *)
  • PARI
    a(n)=([0,1;1,3]^n*[2;5])[1,1] \\ Charles R Greathouse IV, Oct 13 2016

Formula

G.f.: (2-x)/(1-3*x-x^2).
a(n) = 3*a(n-1) + a(n-2) with a(0)=2 and a(1)=5.
a(n) = ((4+7*A)*A^(-n-1) + (4+7*B)*B^(-n-1))/13 with A = (-3+sqrt(13))/2 and B = (-3-sqrt(13))/2.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^n*2/(A006497(n) - A006190(n)*sqrt(13)).
a(n) = 2 * Sum_{k=0..n-2} A168561(n-2,k)*3^k + 5 * Sum_{k=0..n-1} A168561(n-1,k)*3^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 2*A006190(n+1) - A006190(n). - R. J. Mathar, Feb 14 2024

A254124 The number of tilings of a 3 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1.

Original entry on oeis.org

1, 4, 29, 257, 2408, 22873, 217969, 2078716, 19827701, 189133073, 1804125632, 17209452337, 164160078241, 1565914710964, 14937181915469, 142485030313697, 1359157571347928, 12964936038223753, 123671875897903249, 1179699833714208556, 11253097663211943461
Offset: 0

Views

Author

Steve Butler, Jan 25 2015

Keywords

Comments

Let G_n be the graph with vertices {(a,b) : 1<=a<=5, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.

Crossrefs

Column k=3 of A254414.

Programs

  • PARI
    Vec((1-8*x+5*x^2)/(1-12*x+24*x^2-5*x^3) + O(x^30)) \\ Michel Marcus, Jan 26 2015

Formula

G.f.: (1 - 8*x + 5*x^2)/(1 - 12*x + 24*x^2 - 5*x^3).
a(n) = 12*a(n-1) - 24*a(n-2) + 5*a(n-3) for n > 2. - Colin Barker, Jun 07 2020

A254125 The number of tilings of a 4 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1.

Original entry on oeis.org

1, 8, 124, 2408, 50128, 1064576, 22734496, 486248000, 10404289216, 222647030144, 4764694602112, 101966374503680, 2182126445631232, 46698521255409152, 999370260391863808, 21386993399983588352, 457691719382960757760, 9794818132582234683392
Offset: 0

Views

Author

Steve Butler, Jan 25 2015

Keywords

Comments

Let G_n be the graph with vertices {(a,b) : 1<=a<=7, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.

Crossrefs

Column k=4 of A254414.

Programs

  • PARI
    Vec((1-22*x+86*x^2-92*x^3+16*x^4)/(1-30*x+202*x^2-396*x^3 +248*x^4-32*x^5) + O(x^30)) \\ Michel Marcus, Jan 26 2015

Formula

G.f.: (1 - 22x + 86x^2 - 92x^3 + 16x^4)/(1 - 30x + 202x^2 - 396x^3 + 248x^4 - 32x^5).
a(n) = 30*a(n-1) - 202*a(n-2) + 396*a(n-3) - 248*a(n-4) + 32*a(n-5) for n>4. - Colin Barker, Jun 07 2020

A254126 The number of tilings of a 5 X n rectangle using integer length rectangles with at least one length of size 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1, 5 X 1.

Original entry on oeis.org

1, 16, 533, 22873, 1064576, 50796983, 2441987149, 117656540512, 5672528575545, 273541357254277, 13191518965300160, 636171495829068099, 30680036092304563369, 1479579136691648516016, 71354395560692698401005, 3441147782121276015384833, 165953315828852845775456128
Offset: 0

Views

Author

Steve Butler, Jan 25 2015

Keywords

Comments

Let G_n be the graph with vertices {(a,b) : 1<=a<=9, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.

Crossrefs

Column k=5 of A254414.

Formula

G.f: (1 - 58*x + 799*x^2 - 4041*x^3 + 8286*x^4 - 7357*x^5 + 2660*x^6 - 312*x^7)/(1 - 74*x + 1450*x^2 - 10672*x^3 + 34214*x^4 - 50814*x^5 + 34671*x^6 - 9772*x^7 + 936*x^8).

A208343 Triangle of coefficients of polynomials v(n,x) jointly generated with A208342; see the Formula section.

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 1, 2, 5, 0, 1, 2, 5, 8, 0, 1, 2, 6, 10, 13, 0, 1, 2, 7, 13, 20, 21, 0, 1, 2, 8, 16, 29, 38, 34, 0, 1, 2, 9, 19, 39, 60, 71, 55, 0, 1, 2, 10, 22, 50, 86, 122, 130, 89, 0, 1, 2, 11, 25, 62, 116, 187, 241, 235, 144, 0, 1, 2, 12, 28, 75, 150, 267, 392, 468
Offset: 1

Views

Author

Clark Kimberling, Feb 25 2012

Keywords

Comments

u(n,n) = A000045(n+1) (Fibonacci numbers).
n-th row sum: 2^(n-1)
As triangle T(n,k) with 0 <= k <= n, it is (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 26 2012

Examples

			First five rows:
  1;
  0, 2;
  0, 1, 3;
  0, 1, 2, 5;
  0, 1, 2, 5, 8;
First five polynomials v(n,x):
  1
     2x
      x + 3x^2
      x + 2x^2 + 5x^3
      x + 2x^2 + 5x^3 + 8x^4.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208342 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208343 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 26 2012: (Start)
As triangle T(n,k) with 0 <= k <= n:
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k > n or if k < 0.
G.f.: (1-(1-y)*x)/(1-(1+y)*x+y*(1-y)*x^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)*A091003(n+1), A152166(n), A000007(n), A000079(n), A055099(n), A152224(n) for x = -2, -1, 0, 1, 2, 3 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A087205(n), A140165(n+1), A016116(n+1), A000045(n+2), A000079(n), A122367(n), A006012(n), A052961(n), A154626(n) for x = -3, -2, -1, 0, 1, 2, 3, 4 respectively. (End)
T(n,k) = A208748(n,k)/2^k. - Philippe Deléham, Mar 05 2012

A254127 The number of tilings of an n X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are of size (1 X i) or (i X 1) with 1<=i<=n.

Original entry on oeis.org

1, 1, 7, 257, 50128, 50796983, 264719566561, 7063448084710944, 963204439792722969647, 670733745303300958404439297, 2384351527902618144856749327661056, 43263422878945294225852497665519673400479, 4006622856873663241294794301627790673728956619649
Offset: 0

Views

Author

Steve Butler, Jan 25 2015

Keywords

Comments

Let R(n) be the set of squares that have vertices at integer coordinates and lie in the region of the plane |x|+|y|<=n+1, and let two squares be independent if they do not share a common edge. Then a(n) is the number of ways to pick a set of independent cell(s) in R(n). (Note R(n) is also known as the Aztec diamond.)

Examples

			a(2)=7 for the following 7 tilings:
   _ _   _ _   _ _   _ _   _ _   _ _   _ _
  |_|_| |_ _| |_|_| | |_| |_| | |_ _| | | |
  |_|_| |_|_| |_ _| |_|_| |_|_| |_ _| |_|_|
		

Crossrefs

Main diagonal of A254414.

Programs

  • SageMath
    def matrix_entry(L1, L2, n):
        tally=0
        for i in range(n-1):
            if (not i in L1) and (not i in L2) and (not i+1 in L1) and (not i+1 in L2):
                tally+=1
        return 2^tally
    def a(n):
        index_set={}
        counter=0
        for C in Combinations(n):
            index_set[counter]=C
            counter+=1
        current_v=[0]*counter
        current_v[0]=1
        for t in range(n):
            new_v=[0]*counter
            for i in range(counter):
                for j in range(counter):
                    new_v[i]+=current_v[j]*matrix_entry(index_set[I], index_set[j], n)
            current_v=new_v
        return current_v[0]
    for n in range(0, 10):
        print(a(n), end=', ')

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 30 2015

A095939 a(n+2) = 5a(n+1) - 3a(n) (n >= 1); a(0) = 1, a(1) = 2, a(2) = 9.

Original entry on oeis.org

1, 2, 9, 39, 168, 723, 3111, 13386, 57597, 247827, 1066344, 4588239, 19742163, 84946098, 365504001, 1572681711, 6766896552, 29116437627, 125281498479, 539058179514, 2319446402133, 9980057472123, 42941948154216
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2004

Keywords

Crossrefs

Equals A095934 - A095940. Cf. A052961.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{5,-3},{2,9},30]] (* Harvey P. Dale, Sep 04 2013 *)

Extensions

Extended by Ray Chandler, Jul 16 2004

A152599 a(n) = 10*a(n-1) - 12*a(n-2) for n > 1; a(0) = 1, a(1) = 4 .

Original entry on oeis.org

1, 4, 28, 232, 1984, 17056, 146752, 1262848, 10867456, 93520384, 804794368, 6925699072, 59599458304, 512886194176, 4413668442112, 37982050091008, 326856479604736, 2812780194955264, 24205524194295808, 208301879603494912, 1792552505703399424, 15425902501792055296
Offset: 0

Views

Author

Philippe Deléham, Dec 09 2008

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, -12}, {1, 4}, 25] (* Paolo Xausa, Jan 19 2024 *)

Formula

G.f.: (1-6*x)/(1-10*x+12*x^2).
a(n) = Sum_{k=0..n} A147703(n,k)*3^(n-k).
a(n) = 2^n*A052961(n). - R. J. Mathar, Jun 14 2016
Showing 1-10 of 12 results. Next