cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228754 T(n,k)=Number of nXk binary arrays with top left element equal to 1 and no two ones adjacent horizontally or antidiagonally.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 9, 8, 8, 5, 20, 39, 21, 16, 8, 50, 126, 168, 55, 32, 13, 119, 482, 780, 723, 144, 64, 21, 289, 1712, 4599, 4808, 3111, 377, 128, 34, 696, 6277, 24246, 43862, 29608, 13386, 987, 256, 55, 1682, 22700, 134440, 342207, 418370, 182288, 57597, 2584, 512
Offset: 1

Views

Author

R. H. Hardin Sep 02 2013

Keywords

Comments

Table starts
...1....1......2.......3.........5...........8...........13.............21
...2....3......9......20........50.........119..........289............696
...4....8.....39.....126.......482........1712.........6277..........22700
...8...21....168.....780......4599.......24246.......134440.........728537
..16...55....723....4808.....43862......342207......2876170.......23326164
..32..144...3111...29608....418370.....4823826.....61534448......746135864
..64..377..13386..182288...3990739....67970044...1316714732....23857469157
.128..987..57597.1122240..38067290...957616341..28177227352...762713002760
.256.2584.247827.6908896.363121586.13491214832.602998827928.24382157716612

Examples

			Some solutions for n=4 k=4
..1..0..1..0....1..0..0..1....1..0..0..0....1..0..0..1....1..0..1..0
..0..0..0..1....1..0..0..0....1..0..0..0....0..1..0..0....1..0..0..1
..0..0..0..0....1..0..0..1....0..0..0..0....0..0..0..1....0..1..0..1
..0..0..0..1....0..0..0..0....0..1..0..0....0..1..0..0....0..0..0..0
		

Crossrefs

Column 1 is A000079(n-1)
Column 2 is A001906
Column 3 is A095939
Row 1 is A000045
Row 2 is A097075(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 5*a(n-1) -3*a(n-2)
k=4: a(n) = 8*a(n-1) -12*a(n-2) +4*a(n-3)
k=5: a(n) = 13*a(n-1) -36*a(n-2) +29*a(n-3) -5*a(n-4) for n>5
k=6: a(n) = 21*a(n-1) -112*a(n-2) +217*a(n-3) -157*a(n-4) +36*a(n-5) for n>6
k=7: [order 7] for n>9
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +3*a(n-2) +a(n-3)
n=3: a(n) = 2*a(n-1) +6*a(n-2) -a(n-4)
n=4: [order 8]
n=5: [order 13]
n=6: [order 21]
n=7: [order 34]

A095934 Expansion of (1-x)^2/(1-5*x+3*x^2).

Original entry on oeis.org

1, 3, 13, 56, 241, 1037, 4462, 19199, 82609, 355448, 1529413, 6580721, 28315366, 121834667, 524227237, 2255632184, 9705479209, 41760499493, 179686059838, 773148800711, 3326685824041, 14313982718072, 61589856118237, 265007332436969, 1140267093830134
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2004

Keywords

Comments

a(n) is the number of generalized compositions of n when there are i+2 different types of i, (i=1,2,...). [Milan Janjic, Sep 24 2010]

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^2/(1-5x+3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-3},{1,3,13},30] (* Harvey P. Dale, Jun 21 2021 *)
  • PARI
    a(n)=polcoeff((1-x)^2/(1-5*x+3*x^2)+x*O(x^n),n)

Formula

a(n+2) = 5a(n+1) - 3a(n) (n >= 1); a(0) = 1, a(1) = 3, a(2) = 13.

A095940 a(n+2) = 5*a(n+1) - 3*a(n) (n >= 1); a(0) = 0, a(1) = 1, a(2) = 4.

Original entry on oeis.org

0, 1, 4, 17, 73, 314, 1351, 5813, 25012, 107621, 463069, 1992482, 8573203, 36888569, 158723236, 682950473, 2938582657, 12644061866, 54404561359, 234090621197, 1007239421908, 4333925245949, 18647907964021, 80237764082258
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2004

Keywords

Crossrefs

Cf. A018902; equals A095934 - A095939.

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{5,-3},{1,4},30]] (* Harvey P. Dale, Aug 20 2011 *)

Formula

G.f.: (x-x^2)/(3*x^2-5*x+1). - Harvey P. Dale, Aug 20 2011

Extensions

Extended by Ray Chandler, Jul 16 2004
Showing 1-3 of 3 results.