cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095939 a(n+2) = 5a(n+1) - 3a(n) (n >= 1); a(0) = 1, a(1) = 2, a(2) = 9.

Original entry on oeis.org

1, 2, 9, 39, 168, 723, 3111, 13386, 57597, 247827, 1066344, 4588239, 19742163, 84946098, 365504001, 1572681711, 6766896552, 29116437627, 125281498479, 539058179514, 2319446402133, 9980057472123, 42941948154216
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2004

Keywords

Crossrefs

Equals A095934 - A095940. Cf. A052961.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{5,-3},{2,9},30]] (* Harvey P. Dale, Sep 04 2013 *)

Extensions

Extended by Ray Chandler, Jul 16 2004

A095934 Expansion of (1-x)^2/(1-5*x+3*x^2).

Original entry on oeis.org

1, 3, 13, 56, 241, 1037, 4462, 19199, 82609, 355448, 1529413, 6580721, 28315366, 121834667, 524227237, 2255632184, 9705479209, 41760499493, 179686059838, 773148800711, 3326685824041, 14313982718072, 61589856118237, 265007332436969, 1140267093830134
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2004

Keywords

Comments

a(n) is the number of generalized compositions of n when there are i+2 different types of i, (i=1,2,...). [Milan Janjic, Sep 24 2010]

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^2/(1-5x+3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-3},{1,3,13},30] (* Harvey P. Dale, Jun 21 2021 *)
  • PARI
    a(n)=polcoeff((1-x)^2/(1-5*x+3*x^2)+x*O(x^n),n)

Formula

a(n+2) = 5a(n+1) - 3a(n) (n >= 1); a(0) = 1, a(1) = 3, a(2) = 13.
Showing 1-2 of 2 results.