A254150
Number of independent sets in the generalized Aztec diamond E(L_5,L_{2n-1}).
Original entry on oeis.org
1, 8, 73, 689, 6556, 62501, 596113, 5686112, 54239137, 517383521, 4935293524, 47077513469, 449070034657, 4283656560248, 40861585458553, 389776618229969, 3718059650555596, 35466384896440661, 338312070235103473, 3227141903559443792, 30783545081553045457
Offset: 0
A254151
Number of independent sets in the generalized Aztec diamond E(L_7,L_{2n-1}).
Original entry on oeis.org
1, 16, 314, 6556, 139344, 2976416, 63663808, 1362242592, 29151501760, 623849225024, 13350628082560, 285709494797952, 6114316283697408, 130849237522680064, 2800235203724240384, 59926350645878761984, 1282452098548524184576, 27445078313878468469760
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
- Index entries for linear recurrences with constant coefficients, signature (30,-202,396,-248,32).
-
LinearRecurrence[{30,-202,396,-248,32},{1,16,314,6556,139344},20] (* Harvey P. Dale, May 31 2024 *)
-
Vec((1 - 14*x + 36*x^2 - 28*x^3 + 4*x^4)/(1 - 30*x + 202*x^2 - 396*x^3 + 248*x^4 - 32*x^5) + O(x^20)) \\ Andrew Howroyd, Jan 16 2020
A254152
Number of independent sets in the generalized Aztec diamond E(L_9,L_{2n-1}).
Original entry on oeis.org
1, 32, 1351, 62501, 2976416, 142999897, 6888568813, 332097693792, 16014193762579, 772279980131297, 37243762479698928, 1796118644459454733, 86619824190256627593, 4177339899819872607008, 201457018240598757372431, 9715496740529686006497709, 468541027322402116068858304
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
- Index entries for linear recurrences with constant coefficients, signature (74,-1450,10672,-34214,50814,-34671,9772,-936).
a(10)-a(11) corrected and a(12) and beyond from
Andrew Howroyd, Jan 15 2020
A054867
Number of non-attacking configurations on a diamond of size n, where a prince attacks the four adjacent non-diagonal squares.
Original entry on oeis.org
1, 2, 17, 689, 139344, 142999897, 748437606081, 19999400591072512, 2728539172202554958697, 1900346273206544901717879089, 6755797872872106084596492075448192, 122584407857548123729431742141838309441329, 11352604691637658946858196503018301306800588837281
Offset: 0
Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
From _Andrew Howroyd_, Jan 16 2020: (Start)
Case n=2: The grid consists of 5 squares as shown below.
__
__|__|__
|__|__|__|
|__|
If a prince is placed on the central square then a prince cannot be placed on the other 4 squares, otherwise princes can be placed in any combination. The total number of non-attacking configurations is then 1 + 2^4 = 17, so a(2) = 17.
.
Case n=3: The grid consists of 13 squares as shown below:
__
__|__|__
__|__|__|__|__
|__|__|__|__|__|
|__|__|__|
|__|
The total number of non-attacking configurations of princes is 689 so a(3) = 689.
(End)
a(0)=1 prepended and terms a(5) and beyond from
Andrew Howroyd, Jan 15 2020
Showing 1-4 of 4 results.
Comments