Original entry on oeis.org
1, 4, 16, 62, 233, 855, 3083, 10978, 38746, 135924, 474955, 1655789, 5766389, 20080608, 69976772, 244166410, 853410637, 2988825507, 10490538559, 36905911166, 130139760590, 459970519296, 1629395348591, 5784362027257
Offset: 0
-
LinearRecurrence[{11,-44,75,-45},{1,4,16,62},30] (* Harvey P. Dale, Aug 06 2022 *)
A014445
Even Fibonacci numbers; or, Fibonacci(3*n).
Original entry on oeis.org
0, 2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, 832040, 3524578, 14930352, 63245986, 267914296, 1134903170, 4807526976, 20365011074, 86267571272, 365435296162, 1548008755920, 6557470319842, 27777890035288, 117669030460994, 498454011879264, 2111485077978050
Offset: 0
G.f. = 2*x + 8*x^2 + 34*x^3 + 144*x^4 + 610*x^5 + 2584*x^6 + 10946*x^7 + ...
- Arthur T. Benjamin and Jennifer J. Quinn,, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 232.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38 (2012), pp. 1871-1876 (See Corollary 1 (v)).
- H. H. Ferns, Problem B-115, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 5, No. 2 (1967), p. 202; Identities for F_{kn} and L{kn}, Solution to Problem B-115 by Stanley Rabinowitz, ibid., Vol. 6, No. 1 (1968), pp. 92-93.
- Ira M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq., Vol. 16 (2013), Article 13.4.5.
- Edyta Hetmaniok, Bozena Piatek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Math., Vol. 15 (2017), pp. 477-485.
- Tanya Khovanova, Recursive Sequences.
- Ron Knott, Mathematics of the Fibonacci Series.
- Bahar Kuloğlu, Engin Özkan, and Marin Marin, Fibonacci and Lucas Polynomials in n-gon, An. Şt. Univ. Ovidius Constanţa (Romania 2023) Vol. 31, No 2, 127-140.
- Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Roberto Tauraso, Some Congruences for Central Binomial Sums Involving Fibonacci and Lucas Numbers, JIS 19 (2016) # 16.5.4
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math., Vol. 3, No. 2 (2009), pp. 310-329, MR2555042.
- Roman Witula, Binomials transformation formulae of scaled Lucas numbers, Demonstratio Math., Vol. 46 (2013), pp. 15-27.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
Cf.
A001519,
A001906,
A015448,
A020699,
A033887,
A033889,
A074872,
A081567,
A081568,
A081569,
A081574,
A081575,
A098317,
A163073.
-
[Fibonacci(3*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
a:= n-> (<<0|1>, <1|1>>^(3*n))[1,2]:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 03 2023
-
Table[Fibonacci[3n], {n,0,30}] (* Stefan Steinerberger, Apr 07 2006 *)
LinearRecurrence[{4,1},{0,2},30] (* Harvey P. Dale, Nov 14 2021 *)
Table[ SeriesCoefficient[2*x/(1 - 4*x - x^2), {x, 0, n}], {n, 0, 20}] (* Nikolaos Pantelidis, Feb 02 2023 *)
-
numlib::fibonacci(3*n) $ n = 0..30; // Zerinvary Lajos, May 09 2008
-
a(n)=fibonacci(3*n) \\ Charles R Greathouse IV, Oct 25 2012
-
[fibonacci(3*n) for n in range(0, 30)] # Zerinvary Lajos, May 15 2009
A030191
Scaled Chebyshev U-polynomial evaluated at sqrt(5)/2.
Original entry on oeis.org
1, 5, 20, 75, 275, 1000, 3625, 13125, 47500, 171875, 621875, 2250000, 8140625, 29453125, 106562500, 385546875, 1394921875, 5046875000, 18259765625, 66064453125, 239023437500, 864794921875, 3128857421875, 11320312500000, 40957275390625, 148184814453125
Offset: 0
G.f. = 1 + 5*x + 20*x^2 + 75*x^3 + 275*x^4 + 1000*x^5 + 3625*x^6 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Santiago Alzate, Oscar Correa, and Rigoberto Flórez, Fibonacci identities from Jordan Identities, arXiv:2009.02639 [math.NT], 2020.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0 ,b=1; p=5, q=-5.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs. (38) and (45), lhs, m=5.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Index entries for linear recurrences with constant coefficients, signature (5,-5).
- Index entries for sequences related to Chebyshev polynomials.
-
a:=[1,5];; for n in [3..30] do a[n]:=5*(a[n-1]-a[n-2]); od; a; # G. C. Greubel, Dec 28 2019
-
I:=[1,5]; [n le 2 select I[n] else 5*(Self(n-1) - Self(n-2)): n in [1..30]]; // G. C. Greubel, Dec 28 2019
-
seq(coeff(series(1/(1-5*x+5*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 28 2019
-
Table[MatrixPower[{{2,1},{1,3}},n][[1]][[2]],{n,0,44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
a[ n_]:= (((5 + Sqrt[5])/2)^(n + 1) - ((5 - Sqrt[5])/2)^(n + 1)) / Sqrt[5] // Expand; (* Michael Somos, Aug 27 2015 *)
Table[If[EvenQ[n], 5^(n/2)*LucasL[n+1], 5^((n+1)/2)*Fibonacci[n+1]], {n,0,30}] (* G. C. Greubel, Dec 28 2019 *)
-
{a(n) = imag((quadgen(5) + 2)^(n+1))}; /* Michael Somos, Aug 27 2015 */
-
[lucas_number1(n,5,5) for n in range(1, 22)] # Zerinvary Lajos, Apr 22 2009
A178381
Number of paths of length n starting at initial node of the path graph P_9.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 20, 35, 70, 125, 250, 450, 900, 1625, 3250, 5875, 11750, 21250, 42500, 76875, 153750, 278125, 556250, 1006250, 2012500, 3640625, 7281250, 13171875, 26343750, 47656250, 95312500, 172421875, 344843750
Offset: 0
G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 70*x^8 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
- Nachum Dershowitz, Between Broadway and the Hudson, arXiv:2006.06516 [math.CO], 2020.
- Eric Weisstein's World of Mathematics, Trigonometric Identities.
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-5).
Cf.
A000007 (P_1),
A000012 (P_2),
A016116 (P_3),
A000045 (P_4),
A038754 (P_5),
A028495 (P_6),
A030436 (P_7),
A061551 (P_8), this sequence (P_9),
A336675 (P_10),
A336678 (P_11), and
A001405 (P_infinity).
Cf.
A216212 (P_9 starting in the middle).
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4))); // G. C. Greubel, Sep 18 2018
-
with(GraphTheory): P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=36; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P); od: seq(a(n),n=0..nmax);
r := j -> (-1)^(j/10) - (-1)^(1-j/10):
a := k -> add((2 + r(j))*r(j)^k, j in [1, 3, 5, 7, 9])/10:
seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 18 2020
-
CoefficientList[Series[(1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4), {x,0,50}], x] (* G. C. Greubel, Sep 18 2018 *)
-
x='x+O('x^50); Vec((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4)) \\ G. C. Greubel, Sep 18 2018
A094441
Triangular array T(n,k) = Fibonacci(n+1-k)*C(n,k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 5, 12, 12, 4, 1, 8, 25, 30, 20, 5, 1, 13, 48, 75, 60, 30, 6, 1, 21, 91, 168, 175, 105, 42, 7, 1, 34, 168, 364, 448, 350, 168, 56, 8, 1, 55, 306, 756, 1092, 1008, 630, 252, 72, 9, 1, 89, 550, 1530, 2520, 2730, 2016, 1050, 360, 90, 10, 1
Offset: 0
First five rows:
1;
1, 1;
2, 2, 1;
3, 6, 3, 1;
5, 12, 12, 4, 1;
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
From _Philippe Deléham_, Mar 27 2012: (Start)
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 3, 6, 3, 1;
0, 5, 12, 12, 4, 1. (End)
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(n-k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094441 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094442 *)
(* Next program outputs polynomials having coefficients T(n,k) *)
g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[(x + 1)/(1 - x - x^2), {x, n}]]]
Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
(* Second program *)
Table[Fibonacci[n-k+1]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n-k+1);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A039717
Row sums of convolution triangle A030523.
Original entry on oeis.org
1, 4, 15, 55, 200, 725, 2625, 9500, 34375, 124375, 450000, 1628125, 5890625, 21312500, 77109375, 278984375, 1009375000, 3651953125, 13212890625, 47804687500, 172958984375, 625771484375, 2264062500000, 8191455078125
Offset: 1
-
CoefficientList[Series[(1 - x) / (1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
-
Vec(x*(1-x)/(1-5*x+5*x^2) + O(x^40)) \\ Altug Alkan, Nov 20 2015
A216219
Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=5 or if k-n>=5, T(4,0) = T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 0, 5, 10, 10, 5, 0, 0, 5, 15, 20, 15, 5, 0, 0, 0, 20, 35, 35, 20, 0, 0, 0, 0, 20, 55, 70, 55, 20, 0, 0, 0, 0, 0, 75, 125, 125, 75, 0, 0, 0, 0, 0, 0, 75, 200, 250, 200
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, ...
1, 3, 6, 10, 15, 20, 20, 0, 0, 0, 0, ...
1, 4, 10, 20, 35, 55, 75, 75, 0, 0, 0, ...
1, 5, 15, 35, 70, 125, 200, 275, 275, 0, 0, ...
0, 5, 20, 55, 125, 250, 450, 725, 1000, 1000, 0, ...
0, 0, 20, 75, 200, 450, 900, ...
A033191
Binomial transform of [ 1, 0, 1, 1, 3, 6, 15, 36, 91, 231, 595, ... ], which is essentially binomial(Fibonacci(k) + 1, 2).
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, 58598, 206516, 732825, 2613834, 9358677, 33602822, 120902914, 435668420, 1571649221, 5674201118, 20497829133, 74079051906, 267803779710, 968355724724, 3502058316337, 12666676646162, 45818284122149
Offset: 0
1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ...
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012 (Corollary 3, case k=8, pages 10-11). [_Bruno Berselli_, May 12 2012]
- Dimana Miroslavova Pramatarova, Investigating the Periodicity of Weighted Catalan Numbers and Generalizing Them to Higher Dimensions, MIT Res. Sci. Instit. (2025). See p. 9.
- Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
-
with(GraphTheory): G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=24; n2:=nmax*2: for n from 0 to n2 do B(n):=A^n; a(n):=B(n)[1,1]; od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
-
CoefficientList[Series[(1-7x+15x^2-10x^3+x^4)/(1-8x+21x^2-20x^3+5x^4), {x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{8,-21,20,-5},{1,2,5,14}, 30]] (* Harvey P. Dale, Apr 26 2011 *)
-
{a(n) = local(A); A = 1; for( i=1, 8, A = 1 / (1 - x*A)); polcoeff( A + x * O(x^n), n)} /* Michael Somos, May 12 2012 */
A081568
Third binomial transform of Fibonacci(n+1).
Original entry on oeis.org
1, 4, 17, 75, 338, 1541, 7069, 32532, 149965, 691903, 3193706, 14745009, 68084297, 314394980, 1451837593, 6704518371, 30961415074, 142980203437, 660285858245, 3049218769908, 14081386948661, 65028302171639, 300302858766202, 1386808687475385, 6404329365899473
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Edyta Hetmaniok, Bożena Piątek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Mathematics, 15(1) (2017), 477-485.
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009), 310-329, MR2555042.
- Index entries for linear recurrences with constant coefficients, signature (7,-11).
-
a:=[1,4];; for n in [3..30] do a[n]:=7*a[n-1]-11*a[n-2]; od; a; # G. C. Greubel, Aug 12 2019
-
I:=[1, 4]; [n le 2 select I[n] else 7*Self(n-1)-11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2013
-
seq(coeff(series((1-3*x)/(1-7*x+11*x^2), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Aug 12 2019
-
CoefficientList[Series[(1-3x)/(1 -7x +11x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
LinearRecurrence[{7,-11},{1,4},30] (* Harvey P. Dale, Feb 01 2015 *)
-
Vec((1-3*x)/(1-7*x+11*x^2) + O(x^30)) \\ Altug Alkan, Dec 10 2015
-
def A081568_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-3*x)/(1-7*x+11*x^2)).list()
A081568_list(30) # G. C. Greubel, Aug 12 2019
A189315
Expansion of g.f. 5*(1-3*x+x^2)/(1-5*x+5*x^2).
Original entry on oeis.org
5, 10, 30, 100, 350, 1250, 4500, 16250, 58750, 212500, 768750, 2781250, 10062500, 36406250, 131718750, 476562500, 1724218750, 6238281250, 22570312500, 81660156250, 295449218750, 1068945312500, 3867480468750, 13992675781250, 50625976562500, 183166503906250, 662702636718750
Offset: 0
Showing 1-10 of 28 results.
Next
Comments