cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A081666 n*3^(n-1)+A081567(n).

Original entry on oeis.org

1, 4, 16, 62, 233, 855, 3083, 10978, 38746, 135924, 474955, 1655789, 5766389, 20080608, 69976772, 244166410, 853410637, 2988825507, 10490538559, 36905911166, 130139760590, 459970519296, 1629395348591, 5784362027257
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Binomial transform of A081663.

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    LinearRecurrence[{11,-44,75,-45},{1,4,16,62},30] (* Harvey P. Dale, Aug 06 2022 *)

Formula

a(n)=A027471(n-1)+A081567(n) G.f.: (1-7x+16x^2-13x^3)/((3x - 1)^2(5x^2-5x+1))

A014445 Even Fibonacci numbers; or, Fibonacci(3*n).

Original entry on oeis.org

0, 2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, 832040, 3524578, 14930352, 63245986, 267914296, 1134903170, 4807526976, 20365011074, 86267571272, 365435296162, 1548008755920, 6557470319842, 27777890035288, 117669030460994, 498454011879264, 2111485077978050
Offset: 0

Views

Author

Keywords

Comments

a(n) = 3^n*b(n;2/3) = -b(n;-2), but we have 3^n*a(n;2/3) = F(3n+1) = A033887 and a(n;-2) = F(3n-1) = A015448, where a(n;d) and b(n;d), n=0,1,...,d, denote the so-called delta-Fibonacci numbers (the argument "d" of a(n;d) and b(n;d) is abbreviation of the symbol "delta") defined by the following equivalent relations: (1 + d*((sqrt(5) - 1)/2))^n = a(n;d) + b(n;d)*((sqrt(5) - 1)/2) equiv. a(0;d)=1, b(0;d)=0, a(n+1;d) = a(n;d) + d*b(n;d), b(n+1;d) = d*a(n;d) + (1-d)b(n;d) equiv. a(0;d)=a(1;d)=1, b(0;1)=0, b(1;d)=d, and x(n+2;d) + (d-2)*x(n+1;d) + (1-d-d^2)*x(n;d) = 0 for every n=0,1,...,d, and x=a,b equiv. a(n;d) = Sum_{k=0..n} C(n,k)*F(k-1)*(-d)^k, and b(n;d) = Sum_{k=0..n} C(n,k)*(-1)^(k-1)*F(k)*d^k equiv. a(n;d) = Sum_{k=0..n} C(n,k)*F(k+1)*(1-d)^(n-k)*d^k, and b(n;d) = Sum_{k=1..n} C(n;k)*F(k)*(1-d)^(n-k)*d^k. The sequences a(n;d) and b(n;d) for special values d are connected with many known sequences: A000045, A001519, A001906, A015448, A020699, A033887, A033889, A074872, A081567, A081568, A081569, A081574, A081575, A163073 (see also the papers of Witula et al.). - Roman Witula, Jul 12 2012
For any odd k, Fibonacci(k*n) = sqrt(Fibonacci((k-1)*n) * Fibonacci((k+1)*n) + Fibonacci(n)^2). - Gary Detlefs, Dec 28 2012
The ratio of consecutive terms approaches the continued fraction 4 + 1/(4 + 1/(4 +...)) = A098317. - Hal M. Switkay, Jul 05 2020

Examples

			G.f. = 2*x + 8*x^2 + 34*x^3 + 144*x^4 + 610*x^5 + 2584*x^6 + 10946*x^7 + ...
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn,, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 232.

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*F(k)*2^k. - Benoit Cloitre, Oct 25 2003
From Lekraj Beedassy, Jun 11 2004: (Start)
a(n) = 4*a(n-1) + a(n-2), with a(-1) = 2, a(0) = 0.
a(n) = 2*A001076(n).
a(n) = (F(n+1))^3 + (F(n))^3 - (F(n-1))^3. (End)
a(n) = Sum_{k=0..floor((n-1)/2)} C(n, 2*k+1)*5^k*2^(n-2*k). - Mario Catalani (mario.catalani(AT)unito.it), Jul 22 2004
a(n) = Sum_{k=0..n} F(n+k)*binomial(n, k). - Benoit Cloitre, May 15 2005
O.g.f.: 2*x/(1 - 4*x - x^2). - R. J. Mathar, Mar 06 2008
a(n) = second binomial transform of (2,4,10,20,50,100,250). This is 2* (1,2,5,10,25,50,125) or 5^n (offset 0): *2 for the odd numbers or *4 for the even. The sequences are interpolated. Also a(n) = 2*((2+sqrt(5))^n - (2-sqrt(5))^n)/sqrt(20). - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009
a(n) = 3*F(n-1)*F(n)*F(n+1) + 2*F(n)^3, F(n)=A000045(n). - Gary Detlefs, Dec 23 2010
a(n) = (-1)^n*3*F(n) + 5*F(n)^3, n >= 0. See the D. Jennings formula given in a comment on A111125, where also the reference is given. - Wolfdieter Lang, Aug 31 2012
With L(n) a Lucas number, F(3*n) = F(n)*(L(2*n) + (-1)^n) = (L(3*n+1) + L(3*n-1))/5 starting at n=1. - J. M. Bergot, Oct 25 2012
a(n) = sqrt(Fibonacci(2*n)*Fibonacci(4*n) + Fibonacci(n)^2). - Gary Detlefs, Dec 28 2012
For n > 0, a(n) = 5*F(n-1)*F(n)*F(n+1) - 2*F(n)*(-1)^n. - J. M. Bergot, Dec 10 2015
a(n) = -(-1)^n * a(-n) for all n in Z. - Michael Somos, Nov 15 2018
a(n) = (5*Fibonacci(n)^3 + Fibonacci(n)*Lucas(n)^2)/4 (Ferns, 1967). - Amiram Eldar, Feb 06 2022
a(n) = 2*i^(n-1)*S(n-1,-4*i), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(-1, x) = 0. From the simplified trisection formula. - Gary Detlefs and Wolfdieter Lang, Mar 04 2023
E.g.f.: 2*exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Stefano Spezia, Jun 03 2024
a(n) = 2*F(n) + 3*Sum_{k=0..n-1} F(3*k)*F(n-k). - Yomna Bakr and Greg Dresden, Jun 10 2024

A030191 Scaled Chebyshev U-polynomial evaluated at sqrt(5)/2.

Original entry on oeis.org

1, 5, 20, 75, 275, 1000, 3625, 13125, 47500, 171875, 621875, 2250000, 8140625, 29453125, 106562500, 385546875, 1394921875, 5046875000, 18259765625, 66064453125, 239023437500, 864794921875, 3128857421875, 11320312500000, 40957275390625, 148184814453125
Offset: 0

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n+4)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+4, s(0) = 1, s(2n+4) = 5. - Herbert Kociemba, Jun 14 2004
Binomial transform of A002878. - Philippe Deléham, Oct 04 2005
Diagonal of square array A216219. - Philippe Deléham, Mar 15 2013
Lim_{n->oo} a(n+1)/a(n) = 2 + phi = A296184, where phi = A001622. - Wolfdieter Lang, Nov 16 2023~

Examples

			G.f. = 1 + 5*x + 20*x^2 + 75*x^3 + 275*x^4 + 1000*x^5 + 3625*x^6 + ...
		

Crossrefs

Programs

  • GAP
    a:=[1,5];; for n in [3..30] do a[n]:=5*(a[n-1]-a[n-2]); od; a; # G. C. Greubel, Dec 28 2019
  • Magma
    I:=[1,5]; [n le 2 select I[n] else 5*(Self(n-1) - Self(n-2)): n in [1..30]]; // G. C. Greubel, Dec 28 2019
    
  • Maple
    seq(coeff(series(1/(1-5*x+5*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 28 2019
  • Mathematica
    Table[MatrixPower[{{2,1},{1,3}},n][[1]][[2]],{n,0,44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    a[ n_]:= (((5 + Sqrt[5])/2)^(n + 1) - ((5 - Sqrt[5])/2)^(n + 1)) / Sqrt[5] // Expand; (* Michael Somos, Aug 27 2015 *)
    Table[If[EvenQ[n], 5^(n/2)*LucasL[n+1], 5^((n+1)/2)*Fibonacci[n+1]], {n,0,30}] (* G. C. Greubel, Dec 28 2019 *)
  • PARI
    {a(n) = imag((quadgen(5) + 2)^(n+1))}; /* Michael Somos, Aug 27 2015 */
    
  • Sage
    [lucas_number1(n,5,5) for n in range(1, 22)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = (sqrt(5))^n*U(n, sqrt(5)/2).
G.f.: 1/(1 - 5*x + 5*x^2).
a(2*k+1) = 5^(k+1)*Fibonacci(2*k+2).
a(2*k) = 5^k*Lucas(2*k+1).
a(n-1) = Sum_{k=0..n} C(n, k)*Fibonacci(2*k). - Benoit Cloitre, Jun 21 2003
a(n) = 5*a(n-1) - 5*a(n-2). - Benoit Cloitre, Oct 23 2003
a(n-1) = (((5+sqrt(5))/2)^n - ((5-sqrt(5))/2)^n)/sqrt(5) is the 2nd binomial transform of Fibonacci(n), the first binomial transform of Fibonacci(2n) and its n-th term is the n-th term of the third binomial transform of Fibonacci(3n) divided by 2^n. - Paul Barry, Mar 23 2004
a(n) = Sum_{k-0..n} 5^k*A109466(n,k). - Philippe Deléham, Nov 28 2006
a(n) = 5*A039717(n), n>0. - Philippe Deléham, Mar 12 2013
a(n) = A216219(n,n+3) = A216219(n,n+4) = A216219(n+3,n) = A216219(n+4,n). - Philippe Deléham, Mar 15 2013
G.f.: 1/(1-5*x/(1+x/(1-x))). - Philippe Deléham, Mar 15 2013
a(n) = -a(-2-n) * 5^(n+1) for all n in Z. - Michael Somos, Aug 27 2015
E.g.f.: exp((5-sqrt(5))*x/2)*((5 + sqrt(5))*exp(sqrt(5)*x) - 5 + sqrt(5))/(2*sqrt(5)). - Stefano Spezia, Dec 29 2019
a(n) = Sum_{k=0..n} A081567(n-k)*2^k. - Philippe Deléham, Mar 10 2023

A178381 Number of paths of length n starting at initial node of the path graph P_9.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 125, 250, 450, 900, 1625, 3250, 5875, 11750, 21250, 42500, 76875, 153750, 278125, 556250, 1006250, 2012500, 3640625, 7281250, 13171875, 26343750, 47656250, 95312500, 172421875, 344843750
Offset: 0

Views

Author

Johannes W. Meijer, May 27 2010, May 29 2010

Keywords

Comments

Counts all paths of length n, n>=0, starting at initial node on the path graph P_9, see the Maple program.
The a(n) represent the number of possible chess games, ignoring the fifty-move and the triple repetition rules, after n moves by White in the following position: White Ka1, Nh1, pawns a2, b6, c2, d6, f2, g3 and g4; Black Ka8, Bc8, pawns a3, b7, c3, d7, f3 and g5.
The path graphs P_(2*p) have as limit(a(n+1)/a(n), n =infinity) = 2 resp. hypergeom([(p-1)/(2*p+1),(p+2)/(2*p+1)],[1/2],3/4) and the path graphs P_(2*p+1) have as limit(a(n+1)/a(n), n =infinity) = 1+cos(Pi/(p+1)), p>=1; see the crossrefs. - Johannes W. Meijer, Jul 01 2010

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 70*x^8 + ...
		

Crossrefs

This is row 9 of A094718.
a(2*n) = A147748(n) and a(2*n+1) = A081567(n).
a(4*n+2) = A109106(n) and a(4*n+3) = A179135(n).
Cf. A000007 (P_1), A000012 (P_2), A016116 (P_3), A000045 (P_4), A038754 (P_5), A028495 (P_6), A030436 (P_7), A061551 (P_8), this sequence (P_9), A336675 (P_10), A336678 (P_11), and A001405 (P_infinity).
Cf. A216212 (P_9 starting in the middle).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4))); // G. C. Greubel, Sep 18 2018
  • Maple
    with(GraphTheory): P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=36; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P); od: seq(a(n),n=0..nmax);
    r := j -> (-1)^(j/10) - (-1)^(1-j/10):
    a := k -> add((2 + r(j))*r(j)^k, j in [1, 3, 5, 7, 9])/10:
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 18 2020
  • Mathematica
    CoefficientList[Series[(1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4), {x,0,50}], x] (* G. C. Greubel, Sep 18 2018 *)
  • PARI
    x='x+O('x^50); Vec((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4)) \\ G. C. Greubel, Sep 18 2018
    

Formula

G.f.: (1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4).
a(n) = 5*a(n-2) - 5*a(n-4) for n>=5 with a(0)=1, a(1)=1, a(2)=2, a(3)=3 and a(4)=6.
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x / (1 - x / (1 - x / (1 + x / (1 + x)))))))). - Michael Somos, Feb 08 2015

A094441 Triangular array T(n,k) = Fibonacci(n+1-k)*C(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 5, 12, 12, 4, 1, 8, 25, 30, 20, 5, 1, 13, 48, 75, 60, 30, 6, 1, 21, 91, 168, 175, 105, 42, 7, 1, 34, 168, 364, 448, 350, 168, 56, 8, 1, 55, 306, 756, 1092, 1008, 630, 252, 72, 9, 1, 89, 550, 1530, 2520, 2730, 2016, 1050, 360, 90, 10, 1
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Triangle of coefficients of polynomials u(n,x) jointly generated with A209415; see the Formula section.
Column 1: Fibonacci numbers: F(n)=A000045(n)
Column 2: n*F(n)
Row sums: odd-indexed Fibonacci numbers
Alternating row sums: signed Fibonacci numbers
Coefficient of x^n in u(n,x): 1
Coefficient of x^(n-1) in u(n,x): n
Coefficient of x^(n-2) in u(n,x): n(n+1)
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
Row n shows the coefficients of the numerator of the n-th derivative of (1/n!)*(x+1)/(1-x-x^2); see the Mathematica program. - Clark Kimberling, Oct 22 2019

Examples

			First five rows:
  1;
  1,  1;
  2,  2,  1;
  3,  6,  3,  1;
  5, 12, 12,  4,  1;
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
From _Philippe Deléham_, Mar 27 2012: (Start)
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, ...) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  2,  2,  1;
  0,  3,  6,  3,  1;
  0,  5, 12, 12,  4,  1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(n-k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A094441 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A094442 *)
    (* Next program outputs polynomials having coefficients T(n,k) *)
    g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[(x + 1)/(1 - x - x^2), {x, n}]]]
    Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
    (* Second program *)
    Table[Fibonacci[n-k+1]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(n-k+1);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A039834(n-1), A000045(n+1), A001519(n+1), A081567(n), A081568(n), A081569(n), A081570(n), A081571(n) for x = -1, 0, 1, 2, 3, 4, 5, 6 respectively. - Philippe Deléham, Dec 14 2009
From Clark Kimberling, Mar 09 2012: (Start)
A094441 shows the coefficient of the polynomials u(n,x) which are jointly generated with polynomials v(n,x) by these rules:
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
(End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1) - T(n-2,k-2), T(1,0) = T(2,0) = T(2,1) = 1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 27 2012
G.f. (1-x*y)/(1 - 2*x*y - x - x^2 + x^2*y + x^2*y^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+1).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+1).
Sum_{k=0..n} (-1)^k * T(n,k) = (-1)^n * Fibonacci(n-1). (End)

A039717 Row sums of convolution triangle A030523.

Original entry on oeis.org

1, 4, 15, 55, 200, 725, 2625, 9500, 34375, 124375, 450000, 1628125, 5890625, 21312500, 77109375, 278984375, 1009375000, 3651953125, 13212890625, 47804687500, 172958984375, 625771484375, 2264062500000, 8191455078125
Offset: 1

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 5.
With offset 0 = INVERT transform of A001792: (1, 3, 8, 20, 48, 112, ...). - Gary W. Adamson, Oct 26 2010
From Tom Copeland, Nov 09 2014: (Start)
The array belongs to a family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the o.g.f. (1-sqrt(1-4x/(1+(1-t)x)))/2 and inverse x*(1-x)/(1 + (t-1)*x*(1-x)). See A091867 for more info on this family. Here t = -4 (mod signs in the results).
Let C(x) = (1 - sqrt(1-4x))/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1+t*x) with inverse P(x,-t).
O.g.f.: G(x) = x*(1-x)/(1 - 5x*(1-x)) = P(Cinv(x),-5).
Inverse O.g.f.: Ginv(x) = (1 - sqrt(1 - 4*x/(1+5x)))/2 = C(P(x,5)) (signed A026378). Cf. A030528. (End)
p-INVERT of (2^n), where p(s) = 1 - s - s^2; see A289780. - Clark Kimberling, Aug 10 2017

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x) / (1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    Vec(x*(1-x)/(1-5*x+5*x^2) + O(x^40)) \\ Altug Alkan, Nov 20 2015

Formula

G.f.: x*(1-x)/(1-5*x+5*x^2) = g1(3, x)/(1-g1(3, x)), g1(3, x) := x*(1-x)/(1-2*x)^2 (g.f. first column of A030523).
From Paul Barry, Apr 16 2004: (Start)
Binomial transform of Fibonacci(2n+2).
a(n) = (sqrt(5)/2 + 5/2)^n*(3*sqrt(5)/10 + 1/2) - (5/2 - sqrt(5)/2)^n*(3*sqrt(5)/10 - 1/2). (End)
a(n) = (1/5)*Sum_{r=1..9} sin(3*r*Pi/10)*sin(r*Pi/2)*(2*cos(r*Pi/10))^(2*n).
a(n) = 5*a(n-1) - 5*a(n-2).
a(n) = Sum_{k=0..n} Sum_{i=0..n} binomial(n, i)*binomial(k+i+1, 2k+1). - Paul Barry, Jun 22 2004
From Johannes W. Meijer, Jul 01 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = (A020876(n) + A093131(n)*sqrt(5))/2.
Limit_{n->oo} A020876(n)/A093131(n) = sqrt(5).
(End)
From Benito van der Zander, Nov 19 2015: (Start)
Limit_{k->oo} a(k+1)/a(k) = 1 + phi^2 = (5 + sqrt(5)) / 2.
a(n) = a(n-1) * 3 + A081567(n-2) (not proved).
(End)
E.g.f.: exp(x*5/2) * (cosh(x*sqrt(5)/2) + (3/sqrt(5))*sinh(x*sqrt(5)/2)). - Fabian Pereyra, Oct 29 2024

A216219 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=5 or if k-n>=5, T(4,0) = T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 0, 5, 10, 10, 5, 0, 0, 5, 15, 20, 15, 5, 0, 0, 0, 20, 35, 35, 20, 0, 0, 0, 0, 20, 55, 70, 55, 20, 0, 0, 0, 0, 0, 75, 125, 125, 75, 0, 0, 0, 0, 0, 0, 75, 200, 250, 200
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Examples

			Square array begins:
1, 1,  1,  1,   1,   0,   0,   0,    0,    0, 0, ...
1, 2,  3,  4,   5,   5,   0,   0,    0,    0, 0, ...
1, 3,  6, 10,  15,  20,  20,   0,    0,    0, 0, ...
1, 4, 10, 20,  35,  55,  75,  75,    0,    0, 0, ...
1, 5, 15, 35,  70, 125, 200, 275,  275,    0, 0, ...
0, 5, 20, 55, 125, 250, 450, 725, 1000, 1000, 0, ...
0, 0, 20, 75, 200, 450, 900, ...
		

Crossrefs

Formula

T(n,n) = A147748(n).
T(n+1,n) = T(n,n+1) = A081567(n).
T(n+2,n) = T(n,n+2) = A039717(n+1).
T(n+3,n) = T(n+4,n) = T(n,n+3) = T(n,n+4) = A030191(n).
Sum_{k, 0<=k<=n} T(n-k,k) = A068913(4,n) = A216212(n).

A033191 Binomial transform of [ 1, 0, 1, 1, 3, 6, 15, 36, 91, 231, 595, ... ], which is essentially binomial(Fibonacci(k) + 1, 2).

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, 58598, 206516, 732825, 2613834, 9358677, 33602822, 120902914, 435668420, 1571649221, 5674201118, 20497829133, 74079051906, 267803779710, 968355724724, 3502058316337, 12666676646162, 45818284122149
Offset: 0

Views

Author

Simon P. Norton

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 1. - Herbert Kociemba, Jun 14 2004
The sequence 1,2,5,14,... has g.f. 1/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x)))) = (1-6x+10x^2-4x^3)/(1-8x+21x^2-20x^3+5x^4), and is the second binomial transform A001519 aerated. - Paul Barry, Dec 17 2009
Counts all paths of length (2*n), n>=0, starting and ending at the initial node on the path graph P_9, see the Maple program. - Johannes W. Meijer, May 29 2010

Examples

			1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ...
		

Crossrefs

Cf. A033192.
Cf. A211216.

Programs

  • Maple
    with(GraphTheory): G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=24; n2:=nmax*2: for n from 0 to n2 do B(n):=A^n; a(n):=B(n)[1,1]; od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    CoefficientList[Series[(1-7x+15x^2-10x^3+x^4)/(1-8x+21x^2-20x^3+5x^4), {x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{8,-21,20,-5},{1,2,5,14}, 30]]  (* Harvey P. Dale, Apr 26 2011 *)
  • PARI
    {a(n) = local(A); A = 1; for( i=1, 8, A = 1 / (1 - x*A)); polcoeff( A + x * O(x^n), n)} /* Michael Somos, May 12 2012 */

Formula

G.f.: (1-7x+15x^2-10x^3+x^4)/(1-8x+21x^2-20x^3+5x^4). - Ralf Stephan, May 13 2003
From Herbert Kociemba, Jun 14 2004: (Start)
a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)^2*(2*cos(r*Pi/10))^(2n), n >= 1;
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), n >= 5. (End)
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x )))))))). - Michael Somos, May 12 2012

A081568 Third binomial transform of Fibonacci(n+1).

Original entry on oeis.org

1, 4, 17, 75, 338, 1541, 7069, 32532, 149965, 691903, 3193706, 14745009, 68084297, 314394980, 1451837593, 6704518371, 30961415074, 142980203437, 660285858245, 3049218769908, 14081386948661, 65028302171639, 300302858766202, 1386808687475385, 6404329365899473
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Binomial transform of A081567.
Case k=3 of family of recurrences a(n) = (2k+1)*a(n-1) - A028387(k-1)*a(n-2) for n >= 2, with a(0) = 1 and a(1) = k + 1.
a(n) = 4^n*a(n;1/4) = Sum_{k=0..n} binomial(n,k) * (-1)^k * F(k-1) * 4^(n-k), which also implies Deléham's formula given below and where a(n;d), n = 0, 1, ..., d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also Witula's et al. papers). - Roman Witula, Jul 12 2012

Crossrefs

Cf. A000045, A161731 (INVERT transform), A007582 (INVERTi transform), A028387, A081567, A081569 (binomial transform), A094441, A099453.

Programs

  • GAP
    a:=[1,4];; for n in [3..30] do a[n]:=7*a[n-1]-11*a[n-2]; od; a; # G. C. Greubel, Aug 12 2019
  • Magma
    I:=[1, 4]; [n le 2 select I[n] else 7*Self(n-1)-11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2013
    
  • Maple
    seq(coeff(series((1-3*x)/(1-7*x+11*x^2), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Aug 12 2019
  • Mathematica
    CoefficientList[Series[(1-3x)/(1 -7x +11x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
    LinearRecurrence[{7,-11},{1,4},30] (* Harvey P. Dale, Feb 01 2015 *)
  • PARI
    Vec((1-3*x)/(1-7*x+11*x^2) + O(x^30)) \\ Altug Alkan, Dec 10 2015
    
  • Sage
    def A081568_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-3*x)/(1-7*x+11*x^2)).list()
    A081568_list(30) # G. C. Greubel, Aug 12 2019
    

Formula

a(n) = 7*a(n-1) - 11*a(n-2) for n >= 2, with a(0) = 1 and a(1) = 4.
a(n) = (1/2 - sqrt(5)/10)*(7/2 - sqrt(5)/2)^n + (sqrt(5)/10 + 1/2)*(sqrt(5)/2 + 7/2)^n = A099453(n) - 3*A099453(n-1).
G.f.: (1 - 3*x)/(1 - 7*x + 11*x^2).
a(n) = Sum_{k=0..n} A094441(n,k)*3^k. - Philippe Deléham, Dec 14 2009
G.f.: Q(0,u)/x - 1/x, where u = x/(1 - 3*x), Q(k,u) = 1 + u^2 + (k+2)*u - u*(k + 1 + u)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
E.g.f.: exp(7*x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jun 03 2024

A189315 Expansion of g.f. 5*(1-3*x+x^2)/(1-5*x+5*x^2).

Original entry on oeis.org

5, 10, 30, 100, 350, 1250, 4500, 16250, 58750, 212500, 768750, 2781250, 10062500, 36406250, 131718750, 476562500, 1724218750, 6238281250, 22570312500, 81660156250, 295449218750, 1068945312500, 3867480468750, 13992675781250, 50625976562500, 183166503906250, 662702636718750
Offset: 0

Views

Author

L. Edson Jeffery, Apr 20 2011

Keywords

Comments

Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,1)=
(0 1 0 0 0)
(1 0 1 0 0)
(0 1 0 1 0)
(0 0 1 0 1)
(0 0 0 2 0).
Then a(n) = Trace(A^(2*n)).
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers (here they are A^(2*n)) of a unit-primitive matrix A_(N,r) (0
From Tom Copeland, Dec 08 2015: (Start)
These are also the non-vanishing traces for the adjacency matrices of the simple Lie algebras B_5 and C_5. See links for B_4, A265185, and B_3, A025192.
a(n+1) = 10 * A081567(n), and, ignoring a(0), a G.F. is 10 *(1-2*x)/(1-5*x+5*x^2) whose denominator is y^5 * A127672(5,1/y) with y = sqrt(x).
-log(1 - 5x^2 + 5x^4) = 10 x^2/2 + 30 x^4/4 + ... provides a logarithmic series for the traces of both the odd and even powers of the matrix beginning with the first power. (End)

Programs

  • Magma
    I:=[5,10,30]; [n le 3 select I[n] else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 09 2015
  • Mathematica
    CoefficientList[Series[5(1-3x+x^2)/(1-5x+5x^2),{x,0,40}],x] (* or *)
    Join[{5},LinearRecurrence[{5,-5},{10,30},40]]  (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    Vec(5*(1-3*x+x^2)/(1-5*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
    

Formula

a(n) = 5*a(n-1)-5*a(n-2), n>2, a(0)=5, a(1)=10, a(2)=30.
a(n) = Sum_{k=1..5} (w_k)^(2*n), w_k=2*cos((2*k-1)*Pi/10).
a(n) = 2^(1-n)*((5-Sqrt(5))^n+(5+Sqrt(5))^n), for n>0, with a(0)=5.
a(n) = 5*A147748(n).
E.g.f.: 1 + 4*exp(5*x/2)*cosh(sqrt(5)*x/2). - Stefano Spezia, Jul 09 2024
Showing 1-10 of 28 results. Next