A014445
Even Fibonacci numbers; or, Fibonacci(3*n).
Original entry on oeis.org
0, 2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, 832040, 3524578, 14930352, 63245986, 267914296, 1134903170, 4807526976, 20365011074, 86267571272, 365435296162, 1548008755920, 6557470319842, 27777890035288, 117669030460994, 498454011879264, 2111485077978050
Offset: 0
G.f. = 2*x + 8*x^2 + 34*x^3 + 144*x^4 + 610*x^5 + 2584*x^6 + 10946*x^7 + ...
- Arthur T. Benjamin and Jennifer J. Quinn,, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 232.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38 (2012), pp. 1871-1876 (See Corollary 1 (v)).
- H. H. Ferns, Problem B-115, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 5, No. 2 (1967), p. 202; Identities for F_{kn} and L{kn}, Solution to Problem B-115 by Stanley Rabinowitz, ibid., Vol. 6, No. 1 (1968), pp. 92-93.
- Ira M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq., Vol. 16 (2013), Article 13.4.5.
- Edyta Hetmaniok, Bozena Piatek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Math., Vol. 15 (2017), pp. 477-485.
- Tanya Khovanova, Recursive Sequences.
- Ron Knott, Mathematics of the Fibonacci Series.
- Bahar Kuloğlu, Engin Özkan, and Marin Marin, Fibonacci and Lucas Polynomials in n-gon, An. Şt. Univ. Ovidius Constanţa (Romania 2023) Vol. 31, No 2, 127-140.
- Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Roberto Tauraso, Some Congruences for Central Binomial Sums Involving Fibonacci and Lucas Numbers, JIS 19 (2016) # 16.5.4
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math., Vol. 3, No. 2 (2009), pp. 310-329, MR2555042.
- Roman Witula, Binomials transformation formulae of scaled Lucas numbers, Demonstratio Math., Vol. 46 (2013), pp. 15-27.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
Cf.
A001519,
A001906,
A015448,
A020699,
A033887,
A033889,
A074872,
A081567,
A081568,
A081569,
A081574,
A081575,
A098317,
A163073.
-
[Fibonacci(3*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
a:= n-> (<<0|1>, <1|1>>^(3*n))[1,2]:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 03 2023
-
Table[Fibonacci[3n], {n,0,30}] (* Stefan Steinerberger, Apr 07 2006 *)
LinearRecurrence[{4,1},{0,2},30] (* Harvey P. Dale, Nov 14 2021 *)
Table[ SeriesCoefficient[2*x/(1 - 4*x - x^2), {x, 0, n}], {n, 0, 20}] (* Nikolaos Pantelidis, Feb 02 2023 *)
-
numlib::fibonacci(3*n) $ n = 0..30; // Zerinvary Lajos, May 09 2008
-
a(n)=fibonacci(3*n) \\ Charles R Greathouse IV, Oct 25 2012
-
[fibonacci(3*n) for n in range(0, 30)] # Zerinvary Lajos, May 15 2009
A081567
Second binomial transform of F(n+1).
Original entry on oeis.org
1, 3, 10, 35, 125, 450, 1625, 5875, 21250, 76875, 278125, 1006250, 3640625, 13171875, 47656250, 172421875, 623828125, 2257031250, 8166015625, 29544921875, 106894531250, 386748046875, 1399267578125, 5062597656250, 18316650390625, 66270263671875, 239768066406250
Offset: 0
a(4)=125: 35*(3 + (35 mod 10 - 10 mod 3)/(10-3)) = 35*(3 + 4/7) = 125. - _Bob Selcoe_, Mar 17 2014
- R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pages 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Santiago Alzate, Oscar Correa, and Rigoberto Flórez, Fibonacci identities from Jordan Identities, arXiv:2009.02639 [math.NT], 2020.
- Carolina Benedetti, Christopher R. H. Hanusa, Pamela E. Harris, Alejandro H. Morales, and Anthony Simpson, Kostant's partition function and magic multiplex juggling sequences, arXiv:2001.03219 [math.CO], 2020. See Table 1 p. 12.
- S. Butler and R. Graham, Enumerating (multiplex) juggling sequences, arXiv:0801.2597 [math.CO], 2008.
- P. E. Harris, E. Insko, and L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055 [math.RT], 2013.
- Edyta Hetmaniok, Bożena Piątek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Mathematics, 15(1) (2017), 477-485.
- A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), #04.3.8.
- Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
- D. Nacin, The Minimal Non-Koszul A(Gamma), arXiv preprint arXiv:1204.1534 [math.QA], 2012. - From _N. J. A. Sloane_, Oct 05 2012
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009) 310-329, MR2555042.
- Index entries for linear recurrences with constant coefficients, signature (5,-5).
Cf.
A000045,
A007051 (INVERTi transform),
A007598,
A028387,
A030191,
A039717,
A049310,
A081568 (binomial transform),
A086351 (INVERT transform),
A090041,
A093129,
A094441,
A111776,
A147748,
A178381,
A189315.
-
I:=[1, 3]; [n le 2 select I[n] else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 27 2012
-
with(GraphTheory):G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=23; n2:=nmax*2+2: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..9); od: seq(a(2*n+1),n=0..nmax); # Johannes W. Meijer, May 29 2010
-
Table[MatrixPower[{{2,1},{1,3}},n][[2]][[2]],{n,0,44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{5,-5},{1,3},30] (* Vincenzo Librandi, Feb 27 2012 *)
-
Vec((1-2*x)/(1-5*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Mar 18 2014
-
def a(n, adict={0:1, 1:3}):
if n in adict:
return adict[n]
adict[n]=5*a(n-1) - 5*a(n-2)
return adict[n] # David Nacin, Mar 04 2012
A094441
Triangular array T(n,k) = Fibonacci(n+1-k)*C(n,k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 5, 12, 12, 4, 1, 8, 25, 30, 20, 5, 1, 13, 48, 75, 60, 30, 6, 1, 21, 91, 168, 175, 105, 42, 7, 1, 34, 168, 364, 448, 350, 168, 56, 8, 1, 55, 306, 756, 1092, 1008, 630, 252, 72, 9, 1, 89, 550, 1530, 2520, 2730, 2016, 1050, 360, 90, 10, 1
Offset: 0
First five rows:
1;
1, 1;
2, 2, 1;
3, 6, 3, 1;
5, 12, 12, 4, 1;
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
From _Philippe Deléham_, Mar 27 2012: (Start)
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 3, 6, 3, 1;
0, 5, 12, 12, 4, 1. (End)
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(n-k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094441 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094442 *)
(* Next program outputs polynomials having coefficients T(n,k) *)
g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[(x + 1)/(1 - x - x^2), {x, n}]]]
Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
(* Second program *)
Table[Fibonacci[n-k+1]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n-k+1);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A081569
Fourth binomial transform of F(n+1).
Original entry on oeis.org
1, 5, 26, 139, 757, 4172, 23165, 129217, 722818, 4050239, 22718609, 127512940, 715962889, 4020920141, 22584986378, 126867394723, 712691811325, 4003745802188, 22492567804517, 126361939999081, 709898671705906, 3988211185370615, 22405825905923321, 125876420631268204
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Edyta Hetmaniok, Bożena Piątek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Mathematics, 15(1) (2017), 477-485.
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009), 310-329, MR2555042.
- Index entries for linear recurrences with constant coefficients, signature (9,-19).
-
a:=[1,5];; for n in [3..30] do a[n]:=9*a[n-1]-19*a[n-2]; od; a; # G. C. Greubel, Aug 12 2019
-
I:=[1, 5]; [n le 2 select I[n] else 9*Self(n-1)-19*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2013
-
seq(coeff(series((1-4*x)/(1-9*x+19*x^2), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Aug 12 2019
-
CoefficientList[Series[(1-4x)/(1 -9x +19x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
-
Vec((1-4*x)/(1-9*x+19*x^2) + O(x^30)) \\ Altug Alkan, Dec 10 2015
-
def A081569_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-4*x)/(1-9*x+19*x^2)).list()
A081569_list(30) # G. C. Greubel, Aug 12 2019
A270863
Self-composition of the Fibonacci sequence.
Original entry on oeis.org
0, 1, 2, 6, 17, 50, 147, 434, 1282, 3789, 11200, 33109, 97878, 289354, 855413, 2528850, 7476023, 22101326, 65338038, 193158521, 571033600, 1688143881, 4990651642, 14753839486, 43616704857, 128943855250, 381196100507, 1126928202714, 3331532438042, 9848993360069
Offset: 0
a(5) = 3*a(4)+a(3)-3*a(2)-a(1) = 51+6-6-1 = 50.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
- Oboifeng Dira, Family of composition pairs g(f(x)) generating A270683
- Index entries for linear recurrences with constant coefficients, signature (3,1,-3,-1).
-
I:=[0, 1, 2, 6]; [m le 4 select I[m] else 3*Self(m-1)+Self(m-2)-3*Self(m-3)-Self(m-4): m in [1..30]]; // Marius A. Burtea, Aug 03 2019
-
f:= x-> x/(1-x-x^2):
a:= n-> coeff(series(f(f(x)), x, n+1), x, n):
seq(a(n), n=0..30);
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-3,1,3]^(n-1)*[1;2;6;17])[1,1] \\ Charles R Greathouse IV, Mar 24 2016
-
concat(0, Vec(x*(1-x-x^2)/(1-3*x-x^2+3*x^3+x^4) + O(x^40))) \\ Colin Barker, Mar 24 2016
A081572
Square array of binomial transforms of Fibonacci numbers, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 13, 5, 1, 5, 17, 35, 34, 8, 1, 6, 26, 75, 125, 89, 13, 1, 7, 37, 139, 338, 450, 233, 21, 1, 8, 50, 233, 757, 1541, 1625, 610, 34, 1, 9, 65, 363, 1490, 4172, 7069, 5875, 1597, 55, 1, 10, 82, 535, 2669, 9633, 23165, 32532, 21250, 4181, 89
Offset: 0
The array rows begins as:
1, 1, 2, 3, 5, 8, 13, ... A000045;
1, 2, 5, 13, 34, 89, 233, ... A001519;
1, 3, 10, 35, 125, 450, 1625, ... A081567;
1, 4, 17, 75, 338, 1541, 7069, ... A081568;
1, 5, 26, 139, 757, 4172, 23165, ... A081569;
1, 6, 37, 233, 1490, 9633, 62753, ... A081570;
1, 7, 50, 363, 2669, 19814, 148153, ... A081571;
Antidiagonal triangle begins as:
1;
1, 1;
1, 2, 2;
1, 3, 5, 3;
1, 4, 10, 13, 5;
1, 5, 17, 35, 34, 8;
1, 6, 26, 75, 125, 89, 13;
1, 7, 37, 139, 338, 450, 233, 21;
1, 8, 50, 233, 757, 1541, 1625, 610, 34;
-
A081572:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j+1)*(n-k)^(k-j): j in [0..k]]) >;
[A081572(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
-
T[n_, k_]:= If[n==0, Fibonacci[k+1], Sum[Binomial[k, j]*Fibonacci[j+1]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2021 *)
-
def A081572(n,k): return sum( binomial(k,j)*fibonacci(j+1)*(n-k)^(k-j) for j in (0..k) )
flatten([[A081572(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021
A106198
Triangle, columns = successive binomial transforms of Fibonacci numbers.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 13, 10, 4, 1, 8, 34, 35, 17, 5, 1, 13, 89, 125, 75, 26, 6, 1, 21, 233, 450, 338, 139, 37, 7, 1, 34, 610, 1625, 1541, 757, 233, 50, 8, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
2, 2, 1;
3, 5, 3, 1;
5, 13, 10, 4, 1;
8, 34, 35, 17, 5, 1;
13, 89, 125, 75, 26, 6, 1;
21, 233, 450, 338, 139, 37, 7, 1;
...
Column 2 = A081567, second binomial transform of Fibonacci numbers: 1, 3, 10, 35, 125, ...
-
T:= function(n,k)
if k=0 then return Fibonacci(n+1);
else return Sum([0..n-k], j-> Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j));
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 11 2019
-
function T(n,k)
if k eq 0 then return Fibonacci(n+1);
else return (&+[Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j): j in [0..n-k]]);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 11 2019
-
with(combinat);
T:= proc(n, k) option remember;
if k=0 then fibonacci(n+1)
else add( binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j), j=0..n-k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 11 2019
-
Table[If[k==0, Fibonacci[n+1], Sum[Binomial[n-k, j]*Fibonacci[j+1]*k^(n-k-j), {j,0,n-k}]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 11 2019 *)
-
T(n,k) = if(k==0, fibonacci(n+1), sum(j=0,n-k, binomial(n-k,j)*fibonacci( j+1)*k^(n-k-j)) ); \\ G. C. Greubel, Dec 11 2019
-
@CachedFunction
def T(n, k):
if (k==0): return fibonacci(n+1)
else: return sum(binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j) for j in (0..n-k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 11 2019
Showing 1-7 of 7 results.
Comments