A014445
Even Fibonacci numbers; or, Fibonacci(3*n).
Original entry on oeis.org
0, 2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, 832040, 3524578, 14930352, 63245986, 267914296, 1134903170, 4807526976, 20365011074, 86267571272, 365435296162, 1548008755920, 6557470319842, 27777890035288, 117669030460994, 498454011879264, 2111485077978050
Offset: 0
G.f. = 2*x + 8*x^2 + 34*x^3 + 144*x^4 + 610*x^5 + 2584*x^6 + 10946*x^7 + ...
- Arthur T. Benjamin and Jennifer J. Quinn,, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 232.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38 (2012), pp. 1871-1876 (See Corollary 1 (v)).
- H. H. Ferns, Problem B-115, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 5, No. 2 (1967), p. 202; Identities for F_{kn} and L{kn}, Solution to Problem B-115 by Stanley Rabinowitz, ibid., Vol. 6, No. 1 (1968), pp. 92-93.
- Ira M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq., Vol. 16 (2013), Article 13.4.5.
- Edyta Hetmaniok, Bozena Piatek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Math., Vol. 15 (2017), pp. 477-485.
- Tanya Khovanova, Recursive Sequences.
- Ron Knott, Mathematics of the Fibonacci Series.
- Bahar Kuloğlu, Engin Özkan, and Marin Marin, Fibonacci and Lucas Polynomials in n-gon, An. Şt. Univ. Ovidius Constanţa (Romania 2023) Vol. 31, No 2, 127-140.
- Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Roberto Tauraso, Some Congruences for Central Binomial Sums Involving Fibonacci and Lucas Numbers, JIS 19 (2016) # 16.5.4
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math., Vol. 3, No. 2 (2009), pp. 310-329, MR2555042.
- Roman Witula, Binomials transformation formulae of scaled Lucas numbers, Demonstratio Math., Vol. 46 (2013), pp. 15-27.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
Cf.
A001519,
A001906,
A015448,
A020699,
A033887,
A033889,
A074872,
A081567,
A081568,
A081569,
A081574,
A081575,
A098317,
A163073.
-
[Fibonacci(3*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
a:= n-> (<<0|1>, <1|1>>^(3*n))[1,2]:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 03 2023
-
Table[Fibonacci[3n], {n,0,30}] (* Stefan Steinerberger, Apr 07 2006 *)
LinearRecurrence[{4,1},{0,2},30] (* Harvey P. Dale, Nov 14 2021 *)
Table[ SeriesCoefficient[2*x/(1 - 4*x - x^2), {x, 0, n}], {n, 0, 20}] (* Nikolaos Pantelidis, Feb 02 2023 *)
-
numlib::fibonacci(3*n) $ n = 0..30; // Zerinvary Lajos, May 09 2008
-
a(n)=fibonacci(3*n) \\ Charles R Greathouse IV, Oct 25 2012
-
[fibonacci(3*n) for n in range(0, 30)] # Zerinvary Lajos, May 15 2009
A094441
Triangular array T(n,k) = Fibonacci(n+1-k)*C(n,k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 5, 12, 12, 4, 1, 8, 25, 30, 20, 5, 1, 13, 48, 75, 60, 30, 6, 1, 21, 91, 168, 175, 105, 42, 7, 1, 34, 168, 364, 448, 350, 168, 56, 8, 1, 55, 306, 756, 1092, 1008, 630, 252, 72, 9, 1, 89, 550, 1530, 2520, 2730, 2016, 1050, 360, 90, 10, 1
Offset: 0
First five rows:
1;
1, 1;
2, 2, 1;
3, 6, 3, 1;
5, 12, 12, 4, 1;
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
From _Philippe Deléham_, Mar 27 2012: (Start)
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 3, 6, 3, 1;
0, 5, 12, 12, 4, 1. (End)
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(n-k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094441 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094442 *)
(* Next program outputs polynomials having coefficients T(n,k) *)
g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[(x + 1)/(1 - x - x^2), {x, n}]]]
Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
(* Second program *)
Table[Fibonacci[n-k+1]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n-k+1);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A081568
Third binomial transform of Fibonacci(n+1).
Original entry on oeis.org
1, 4, 17, 75, 338, 1541, 7069, 32532, 149965, 691903, 3193706, 14745009, 68084297, 314394980, 1451837593, 6704518371, 30961415074, 142980203437, 660285858245, 3049218769908, 14081386948661, 65028302171639, 300302858766202, 1386808687475385, 6404329365899473
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Edyta Hetmaniok, Bożena Piątek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Mathematics, 15(1) (2017), 477-485.
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009), 310-329, MR2555042.
- Index entries for linear recurrences with constant coefficients, signature (7,-11).
-
a:=[1,4];; for n in [3..30] do a[n]:=7*a[n-1]-11*a[n-2]; od; a; # G. C. Greubel, Aug 12 2019
-
I:=[1, 4]; [n le 2 select I[n] else 7*Self(n-1)-11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2013
-
seq(coeff(series((1-3*x)/(1-7*x+11*x^2), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Aug 12 2019
-
CoefficientList[Series[(1-3x)/(1 -7x +11x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
LinearRecurrence[{7,-11},{1,4},30] (* Harvey P. Dale, Feb 01 2015 *)
-
Vec((1-3*x)/(1-7*x+11*x^2) + O(x^30)) \\ Altug Alkan, Dec 10 2015
-
def A081568_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-3*x)/(1-7*x+11*x^2)).list()
A081568_list(30) # G. C. Greubel, Aug 12 2019
A081574
Fourth binomial transform of Fibonacci numbers F(n).
Original entry on oeis.org
0, 1, 9, 62, 387, 2305, 13392, 76733, 436149, 2467414, 13919895, 78398189, 441105696, 2480385673, 13942462833, 78354837710, 440286745563, 2473838793577, 13899100976496, 78088971710501, 438717826841085
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
- J. Pan, Multiple Binomial Transforms and Families of Integer Sequences , J. Int. Seq. 13 (2010), 10.4.2, F^(4).
- Index entries for linear recurrences with constant coefficients, signature (9,-19).
-
a:=[0,1];; for n in [3..30] do a[n]:=9*a[n-1]-19*a[n-2]; od; a; # G. C. Greubel, Aug 13 2019
-
[n le 2 select (n-1) else 9*Self(n-1)-19*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 09 2013
-
seq(coeff(series(x/(1-9*x+19*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Aug 13 2019
-
Join[{a=0,b=1},Table[c=9*b-19*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
LinearRecurrence[{9,-19},{0,1},30] (* Harvey P. Dale, Dec 03 2011 *)
CoefficientList[Series[x/(1 -9x +19x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
-
my(x='x+O('x^30)); Vec(x/(1 - 9*x + 19*x^2)) \\ G. C. Greubel, Aug 13 2019
-
[lucas_number1(n,9,19) for n in range(0, 21)] # Zerinvary Lajos, Apr 23 2009
A081570
Fifth binomial transform of F(n+1).
Original entry on oeis.org
1, 6, 37, 233, 1490, 9633, 62753, 410926, 2700349, 17786985, 117346714, 774991289, 5121849473, 33865596822, 223987930325, 1481764925737, 9803764203682, 64870223394129, 429263295428641, 2840659771285310, 18798621916707821
Offset: 0
-
a:=[1,6];; for n in [3..30] do a[n]:=11*a[n-1]-29*a[n-2]; od; a; # G. C. Greubel, Aug 12 2019
-
I:=[1, 6]; [n le 2 select I[n] else 11*Self(n-1)-29*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2013
-
seq(coeff(series((1-5*x)/(1-11*x+29*x^2), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Aug 12 2019
-
CoefficientList[Series[(1-5x)/(1 -11x +29x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
LinearRecurrence[{11,-29},{1,6},30] (* Harvey P. Dale, Aug 04 2022 *)
-
my(x='x+O('x^30)); Vec((1-5*x)/(1-11*x+29*x^2)) \\ G. C. Greubel, Aug 12 2019
-
def A081570_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-5*x)/(1-11*x+29*x^2)).list()
A081570_list(30) # G. C. Greubel, Aug 12 2019
A270863
Self-composition of the Fibonacci sequence.
Original entry on oeis.org
0, 1, 2, 6, 17, 50, 147, 434, 1282, 3789, 11200, 33109, 97878, 289354, 855413, 2528850, 7476023, 22101326, 65338038, 193158521, 571033600, 1688143881, 4990651642, 14753839486, 43616704857, 128943855250, 381196100507, 1126928202714, 3331532438042, 9848993360069
Offset: 0
a(5) = 3*a(4)+a(3)-3*a(2)-a(1) = 51+6-6-1 = 50.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
- Oboifeng Dira, Family of composition pairs g(f(x)) generating A270683
- Index entries for linear recurrences with constant coefficients, signature (3,1,-3,-1).
-
I:=[0, 1, 2, 6]; [m le 4 select I[m] else 3*Self(m-1)+Self(m-2)-3*Self(m-3)-Self(m-4): m in [1..30]]; // Marius A. Burtea, Aug 03 2019
-
f:= x-> x/(1-x-x^2):
a:= n-> coeff(series(f(f(x)), x, n+1), x, n):
seq(a(n), n=0..30);
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-3,1,3]^(n-1)*[1;2;6;17])[1,1] \\ Charles R Greathouse IV, Mar 24 2016
-
concat(0, Vec(x*(1-x-x^2)/(1-3*x-x^2+3*x^3+x^4) + O(x^40))) \\ Colin Barker, Mar 24 2016
A081572
Square array of binomial transforms of Fibonacci numbers, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 13, 5, 1, 5, 17, 35, 34, 8, 1, 6, 26, 75, 125, 89, 13, 1, 7, 37, 139, 338, 450, 233, 21, 1, 8, 50, 233, 757, 1541, 1625, 610, 34, 1, 9, 65, 363, 1490, 4172, 7069, 5875, 1597, 55, 1, 10, 82, 535, 2669, 9633, 23165, 32532, 21250, 4181, 89
Offset: 0
The array rows begins as:
1, 1, 2, 3, 5, 8, 13, ... A000045;
1, 2, 5, 13, 34, 89, 233, ... A001519;
1, 3, 10, 35, 125, 450, 1625, ... A081567;
1, 4, 17, 75, 338, 1541, 7069, ... A081568;
1, 5, 26, 139, 757, 4172, 23165, ... A081569;
1, 6, 37, 233, 1490, 9633, 62753, ... A081570;
1, 7, 50, 363, 2669, 19814, 148153, ... A081571;
Antidiagonal triangle begins as:
1;
1, 1;
1, 2, 2;
1, 3, 5, 3;
1, 4, 10, 13, 5;
1, 5, 17, 35, 34, 8;
1, 6, 26, 75, 125, 89, 13;
1, 7, 37, 139, 338, 450, 233, 21;
1, 8, 50, 233, 757, 1541, 1625, 610, 34;
-
A081572:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j+1)*(n-k)^(k-j): j in [0..k]]) >;
[A081572(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
-
T[n_, k_]:= If[n==0, Fibonacci[k+1], Sum[Binomial[k, j]*Fibonacci[j+1]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2021 *)
-
def A081572(n,k): return sum( binomial(k,j)*fibonacci(j+1)*(n-k)^(k-j) for j in (0..k) )
flatten([[A081572(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021
A106198
Triangle, columns = successive binomial transforms of Fibonacci numbers.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 13, 10, 4, 1, 8, 34, 35, 17, 5, 1, 13, 89, 125, 75, 26, 6, 1, 21, 233, 450, 338, 139, 37, 7, 1, 34, 610, 1625, 1541, 757, 233, 50, 8, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
2, 2, 1;
3, 5, 3, 1;
5, 13, 10, 4, 1;
8, 34, 35, 17, 5, 1;
13, 89, 125, 75, 26, 6, 1;
21, 233, 450, 338, 139, 37, 7, 1;
...
Column 2 = A081567, second binomial transform of Fibonacci numbers: 1, 3, 10, 35, 125, ...
-
T:= function(n,k)
if k=0 then return Fibonacci(n+1);
else return Sum([0..n-k], j-> Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j));
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 11 2019
-
function T(n,k)
if k eq 0 then return Fibonacci(n+1);
else return (&+[Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j): j in [0..n-k]]);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 11 2019
-
with(combinat);
T:= proc(n, k) option remember;
if k=0 then fibonacci(n+1)
else add( binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j), j=0..n-k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 11 2019
-
Table[If[k==0, Fibonacci[n+1], Sum[Binomial[n-k, j]*Fibonacci[j+1]*k^(n-k-j), {j,0,n-k}]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 11 2019 *)
-
T(n,k) = if(k==0, fibonacci(n+1), sum(j=0,n-k, binomial(n-k,j)*fibonacci( j+1)*k^(n-k-j)) ); \\ G. C. Greubel, Dec 11 2019
-
@CachedFunction
def T(n, k):
if (k==0): return fibonacci(n+1)
else: return sum(binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j) for j in (0..n-k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 11 2019
Showing 1-8 of 8 results.
Comments