A094441
Triangular array T(n,k) = Fibonacci(n+1-k)*C(n,k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 5, 12, 12, 4, 1, 8, 25, 30, 20, 5, 1, 13, 48, 75, 60, 30, 6, 1, 21, 91, 168, 175, 105, 42, 7, 1, 34, 168, 364, 448, 350, 168, 56, 8, 1, 55, 306, 756, 1092, 1008, 630, 252, 72, 9, 1, 89, 550, 1530, 2520, 2730, 2016, 1050, 360, 90, 10, 1
Offset: 0
First five rows:
1;
1, 1;
2, 2, 1;
3, 6, 3, 1;
5, 12, 12, 4, 1;
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
From _Philippe Deléham_, Mar 27 2012: (Start)
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 3, 6, 3, 1;
0, 5, 12, 12, 4, 1. (End)
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(n-k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094441 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094442 *)
(* Next program outputs polynomials having coefficients T(n,k) *)
g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[(x + 1)/(1 - x - x^2), {x, n}]]]
Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
(* Second program *)
Table[Fibonacci[n-k+1]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n-k+1);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A081575
Fifth binomial transform of Fibonacci numbers F(n).
Original entry on oeis.org
0, 1, 11, 92, 693, 4955, 34408, 234793, 1584891, 10624804, 70911005, 471901739, 3134499984, 20794349393, 137837343787, 913174649260, 6047638172037, 40041955063867, 265079998713464, 1754663288995961, 11613976216265115
Offset: 0
- S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
-
a:=[0,1];; for n in [3..30] do a[n]:=11*a[n-1]-29*a[n-2]; od; a; # G. C. Greubel, Aug 13 2019
-
[n le 2 select (n-1) else 11*Self(n-1)-29*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 09 2013
-
seq(coeff(series(x/(1-11*x+29*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Aug 13 2019
-
LinearRecurrence[{11,-29}, {0,1}, 30] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011; modified by G. C. Greubel, Aug 13 2019 *)
CoefficientList[Series[x/(1 -11x +29x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
-
my(x='x+O('x^30)); Vec(x/(1-11*x+29*x^2)) \\ G. C. Greubel, Aug 13 2019
-
[lucas_number1(n,11,29) for n in range(0, 21)] # Zerinvary Lajos, Apr 27 2009
A270863
Self-composition of the Fibonacci sequence.
Original entry on oeis.org
0, 1, 2, 6, 17, 50, 147, 434, 1282, 3789, 11200, 33109, 97878, 289354, 855413, 2528850, 7476023, 22101326, 65338038, 193158521, 571033600, 1688143881, 4990651642, 14753839486, 43616704857, 128943855250, 381196100507, 1126928202714, 3331532438042, 9848993360069
Offset: 0
a(5) = 3*a(4)+a(3)-3*a(2)-a(1) = 51+6-6-1 = 50.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
- Oboifeng Dira, Family of composition pairs g(f(x)) generating A270683
- Index entries for linear recurrences with constant coefficients, signature (3,1,-3,-1).
-
I:=[0, 1, 2, 6]; [m le 4 select I[m] else 3*Self(m-1)+Self(m-2)-3*Self(m-3)-Self(m-4): m in [1..30]]; // Marius A. Burtea, Aug 03 2019
-
f:= x-> x/(1-x-x^2):
a:= n-> coeff(series(f(f(x)), x, n+1), x, n):
seq(a(n), n=0..30);
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-3,1,3]^(n-1)*[1;2;6;17])[1,1] \\ Charles R Greathouse IV, Mar 24 2016
-
concat(0, Vec(x*(1-x-x^2)/(1-3*x-x^2+3*x^3+x^4) + O(x^40))) \\ Colin Barker, Mar 24 2016
A081571
Sixth binomial transform of F(n+1).
Original entry on oeis.org
1, 7, 50, 363, 2669, 19814, 148153, 1113615, 8402722, 63577171, 481991621, 3659227062, 27808295345, 211479529943, 1609093780114, 12247558413819, 93245414394973, 710040492168070, 5407464407991017, 41185377124992351, 313703861897268866, 2389549742539808867
Offset: 0
-
a:=[1,7];; for n in [3..30] do a[n]:=13*a[n-1]-41*a[n-2]; od; a; # G. C. Greubel, Aug 12 2019
-
I:=[1, 7]; [n le 2 select I[n] else 13*Self(n-1)-41*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2013
-
seq(coeff(series((1-6*x)/(1-13*x+41*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Aug 12 2019
-
CoefficientList[Series[(1-6x)/(1 -13x +41x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
-
my(x='x+O('x^30)); Vec((1-6*x)/(1-13*x+41*x^2)) \\ G. C. Greubel, Aug 12 2019
-
def A081571_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-6*x)/(1-13*x+41*x^2)).list()
A081571_list(30) # G. C. Greubel, Aug 12 2019
A081572
Square array of binomial transforms of Fibonacci numbers, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 13, 5, 1, 5, 17, 35, 34, 8, 1, 6, 26, 75, 125, 89, 13, 1, 7, 37, 139, 338, 450, 233, 21, 1, 8, 50, 233, 757, 1541, 1625, 610, 34, 1, 9, 65, 363, 1490, 4172, 7069, 5875, 1597, 55, 1, 10, 82, 535, 2669, 9633, 23165, 32532, 21250, 4181, 89
Offset: 0
The array rows begins as:
1, 1, 2, 3, 5, 8, 13, ... A000045;
1, 2, 5, 13, 34, 89, 233, ... A001519;
1, 3, 10, 35, 125, 450, 1625, ... A081567;
1, 4, 17, 75, 338, 1541, 7069, ... A081568;
1, 5, 26, 139, 757, 4172, 23165, ... A081569;
1, 6, 37, 233, 1490, 9633, 62753, ... A081570;
1, 7, 50, 363, 2669, 19814, 148153, ... A081571;
Antidiagonal triangle begins as:
1;
1, 1;
1, 2, 2;
1, 3, 5, 3;
1, 4, 10, 13, 5;
1, 5, 17, 35, 34, 8;
1, 6, 26, 75, 125, 89, 13;
1, 7, 37, 139, 338, 450, 233, 21;
1, 8, 50, 233, 757, 1541, 1625, 610, 34;
-
A081572:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j+1)*(n-k)^(k-j): j in [0..k]]) >;
[A081572(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
-
T[n_, k_]:= If[n==0, Fibonacci[k+1], Sum[Binomial[k, j]*Fibonacci[j+1]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2021 *)
-
def A081572(n,k): return sum( binomial(k,j)*fibonacci(j+1)*(n-k)^(k-j) for j in (0..k) )
flatten([[A081572(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021
A106198
Triangle, columns = successive binomial transforms of Fibonacci numbers.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 13, 10, 4, 1, 8, 34, 35, 17, 5, 1, 13, 89, 125, 75, 26, 6, 1, 21, 233, 450, 338, 139, 37, 7, 1, 34, 610, 1625, 1541, 757, 233, 50, 8, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
2, 2, 1;
3, 5, 3, 1;
5, 13, 10, 4, 1;
8, 34, 35, 17, 5, 1;
13, 89, 125, 75, 26, 6, 1;
21, 233, 450, 338, 139, 37, 7, 1;
...
Column 2 = A081567, second binomial transform of Fibonacci numbers: 1, 3, 10, 35, 125, ...
-
T:= function(n,k)
if k=0 then return Fibonacci(n+1);
else return Sum([0..n-k], j-> Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j));
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 11 2019
-
function T(n,k)
if k eq 0 then return Fibonacci(n+1);
else return (&+[Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j): j in [0..n-k]]);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 11 2019
-
with(combinat);
T:= proc(n, k) option remember;
if k=0 then fibonacci(n+1)
else add( binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j), j=0..n-k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 11 2019
-
Table[If[k==0, Fibonacci[n+1], Sum[Binomial[n-k, j]*Fibonacci[j+1]*k^(n-k-j), {j,0,n-k}]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 11 2019 *)
-
T(n,k) = if(k==0, fibonacci(n+1), sum(j=0,n-k, binomial(n-k,j)*fibonacci( j+1)*k^(n-k-j)) ); \\ G. C. Greubel, Dec 11 2019
-
@CachedFunction
def T(n, k):
if (k==0): return fibonacci(n+1)
else: return sum(binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j) for j in (0..n-k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 11 2019
Showing 1-6 of 6 results.
Comments