cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A094440 Triangular array read by rows: T(n,k) = Fibonacci(n+1-k)*C(n,k-1), k = 1..n; n >= 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 8, 6, 4, 5, 15, 20, 10, 5, 8, 30, 45, 40, 15, 6, 13, 56, 105, 105, 70, 21, 7, 21, 104, 224, 280, 210, 112, 28, 8, 34, 189, 468, 672, 630, 378, 168, 36, 9, 55, 340, 945, 1560, 1680, 1260, 630, 240, 45, 10, 89, 605, 1870, 3465, 4290, 3696, 2310, 990, 330, 55, 11
Offset: 1

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Row sums yield the even-subscripted Fibonacci numbers (A001906).
Row n shows the coefficients of the numerator of the n-th derivative of c(n)/(x^2+x-1), where c(n) = ((-1)^(n + 1))/n!; see the Mathematica program. - Clark Kimberling, Oct 22 2019

Examples

			Triangle starts:
   1;
   1,  2;
   2,  3,   3;
   3,  8,   6,   4;
   5, 15,  20,  10,  5;
   8, 30,  45,  40, 15,  6;
  13, 56, 105, 105, 70, 21, 7;
  ...
T(4,3) = F(2)*C(4,2) = 1*6 = 6.
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Binomial(n,k-1)* Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    /* As triangle */ [[Fibonacci(n+1-k)*Binomial(n,k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 15 2017
    
  • Maple
    with(combinat): T:=(n,k)->binomial(n,k-1)*fibonacci(n+1-k): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form # Emeric Deutsch
  • Mathematica
    Table[Fibonacci[n+1-k]Binomial[n,k-1],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Sep 14 2016 *)
    (* Next program outputs polynomials having coefficients T(n,k) *)
    g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[1/(1 - x - x^2), {x, n}]]]
    Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
  • PARI
    T(n,k) = binomial(n,k-1)*fibonacci(n-k+1);
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k-1)*fibonacci(n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From Peter Bala, Aug 17 2007: (Start)
With an offset of 0, the row polynomials F(n,x) = Sum_{k = 0..n} C(n,k)* Fibonacci(n-k)*x^k satisfy F(n,x)*L(n,x) = F(2*n,x), where L(n,x) = Sum_{k = 0..n} C(n,k)*Lucas(n-k)*x^k.
Other identities and formulas include:
F(n+1,x)^2 - F(n,x)*F(n+2,x) = (x^2 + x - 1)^n;
Sum_{k = 0..n} C(n,k)*F(n-k,x)*L(k,x) = (2^n)*F(n,x);
F(n,2*x) = Sum_{k = 0..n} C(n,k)*F(n-k,x)*x^k;
F(n,3*x) = Sum_{k = 0..n} C(n,k)*F(n-k,2*x)*x^k, etc.
The sequence {F(n,r)}n>=1 gives the r-th binomial transform of the Fibonacci numbers: r = 1 gives A001906, r = 2 gives A030191, r = 3 gives A099453, r = 4 gives A081574, r = 5 gives A081575.
F(n,1/phi) = (-1)^(n-1)*F(n,-phi) = sqrt(5)^(n-1) for n >= 1, where phi = (1 + sqrt(5))/2.
The polynomials F(n,-x) satisfy a Riemann hypothesis: the zeros of F(n,-x) lie on the vertical line Re x = 1/2 in the complex plane.
G.f.: t/(1 - (2*x + 1)*t + (x^2 + x - 1)*t^2) = t + (1 + 2*x)*t^2 + (2 + 3*x + 3*x^2)*t^3 + (3 + 8*x + 6*x^2 + 4*x^3)*t^4 + ... . (End)
From Peter Bala, Jun 29 2016: (Start)
Working with an offset of 0, the n-th row polynomial F(n,x) = 1/sqrt(5)*( (x + phi)^n - (x - 1/phi)^n ), where phi = (1 + sqrt(5))/2.
d/dx(F(n,x)) = n*F(n-1,x).
F(-n,x) = -F(n,x)/(x^2 + x - 1)^n.
F(n,x - 1) = (-1)^(n-1)*F(n,-x).
F(n,x) is a divisibility sequence of polynomials, that is, if n divides m then F(n,x) divides F(m,x) in the polynomial ring Z[x]. (End)
From G. C. Greubel, Oct 30 2019: (Start)
Sum_{k = 1..n} T(n,k) = Fibonacci(2*n).
Sum_{k = 1..n} (-1)^k * T(n,k) = (-1)^n * Fibonacci(n). (End)
From Clark Kimberling, Oct 30 2019: (Start)
F(n,x) is a strong divisibility sequence of polynomials in Z[x]; that is,
gcd(F(x,h),F(x,k)) = F(x,gcd(h,k)) for h,k >= 1. Thus, if x is an integer, then F(n,x) is a strong divisibility sequence of integers; e.g., for x=3, we have A099453. (End)
Let p(n) denote the polynomial F(x,n). Then p(n) = k(b^n - c^n), where k = -1/sqrt(5), b = (1/2)(2x + 1 - sqrt(5)), c = (1/2)(2x + 1 + sqrt(5)), and for n >=3, p(n) = u*p(n - 1) + v*p(n - 2), where u = 1 + 2 x, v = 1 - x - x^2. - Clark Kimberling, Nov 11 2023

Extensions

Error in expansion of generating function corrected by Peter Bala, Sep 24 2008

A094441 Triangular array T(n,k) = Fibonacci(n+1-k)*C(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 5, 12, 12, 4, 1, 8, 25, 30, 20, 5, 1, 13, 48, 75, 60, 30, 6, 1, 21, 91, 168, 175, 105, 42, 7, 1, 34, 168, 364, 448, 350, 168, 56, 8, 1, 55, 306, 756, 1092, 1008, 630, 252, 72, 9, 1, 89, 550, 1530, 2520, 2730, 2016, 1050, 360, 90, 10, 1
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Triangle of coefficients of polynomials u(n,x) jointly generated with A209415; see the Formula section.
Column 1: Fibonacci numbers: F(n)=A000045(n)
Column 2: n*F(n)
Row sums: odd-indexed Fibonacci numbers
Alternating row sums: signed Fibonacci numbers
Coefficient of x^n in u(n,x): 1
Coefficient of x^(n-1) in u(n,x): n
Coefficient of x^(n-2) in u(n,x): n(n+1)
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
Row n shows the coefficients of the numerator of the n-th derivative of (1/n!)*(x+1)/(1-x-x^2); see the Mathematica program. - Clark Kimberling, Oct 22 2019

Examples

			First five rows:
  1;
  1,  1;
  2,  2,  1;
  3,  6,  3,  1;
  5, 12, 12,  4,  1;
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
From _Philippe Deléham_, Mar 27 2012: (Start)
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, ...) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  2,  2,  1;
  0,  3,  6,  3,  1;
  0,  5, 12, 12,  4,  1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(n-k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A094441 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A094442 *)
    (* Next program outputs polynomials having coefficients T(n,k) *)
    g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[(x + 1)/(1 - x - x^2), {x, n}]]]
    Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
    (* Second program *)
    Table[Fibonacci[n-k+1]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(n-k+1);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A039834(n-1), A000045(n+1), A001519(n+1), A081567(n), A081568(n), A081569(n), A081570(n), A081571(n) for x = -1, 0, 1, 2, 3, 4, 5, 6 respectively. - Philippe Deléham, Dec 14 2009
From Clark Kimberling, Mar 09 2012: (Start)
A094441 shows the coefficient of the polynomials u(n,x) which are jointly generated with polynomials v(n,x) by these rules:
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
(End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1) - T(n-2,k-2), T(1,0) = T(2,0) = T(2,1) = 1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 27 2012
G.f. (1-x*y)/(1 - 2*x*y - x - x^2 + x^2*y + x^2*y^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+1).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+1).
Sum_{k=0..n} (-1)^k * T(n,k) = (-1)^n * Fibonacci(n-1). (End)

A094436 Triangular array T(n,k) = Fibonacci(k+1)*binomial(n,k) for k = 0..n; n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 12, 5, 1, 5, 20, 30, 25, 8, 1, 6, 30, 60, 75, 48, 13, 1, 7, 42, 105, 175, 168, 91, 21, 1, 8, 56, 168, 350, 448, 364, 168, 34, 1, 9, 72, 252, 630, 1008, 1092, 756, 306, 55, 1, 10, 90, 360, 1050, 2016, 2730, 2520, 1530, 550, 89
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+1) and n-th alternating row sum is F(n-1).
A094436 is jointly generated with A094437 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x) = u(n-1,x) + x*v(n-1,x) and v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 26 2012
Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
This sequence gives the coefficients of the Jensen polynomials (increasing powers of x) for the sequence {A000045(k)}{k >= 0} of degree n with shift 1. Here the definition of Jensen polynomials of degree n and shift m of an arbitrary real sequence {s(k)}{k >= 0} is used: J(s,m;n,x) := Sum_{j=0..n} binomial(n,j)*s(j + m)*x^j, This definition is used by Griffin et al. with a different notation. - Wolfdieter Lang, Jun 25 2019

Examples

			First four rows:
  1
  1 1
  1 2 2
  1 3 6 3
Sum = 1+3+6+3=13=F(7); alt.Sum = 1-3+6-3=1=F(2).
T(3,2)=F(3)C(3,2)=2*3=6.
From _Philippe Deléham_, Mar 26 2012: (Start)
(1, 0, 0, 1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins :
  1
  1, 0
  1, 1, 0
  1, 2, 2, 0
  1, 3, 6, 3, 0
  1, 4, 12, 12, 5, 0
  1, 5, 20, 30, 25, 8, 0
  1, 6, 30, 60, 75, 48, 13, 0 . (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Fibonacci(k+1)* Binomial(n,k) ))); # G. C. Greubel, Jul 11 2019
  • Magma
    [Fibonacci(k+1)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 11 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A094436 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A094437 *)
    (* Second program *)
    Table[Fibonacci[k+1]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
  • PARI
    T(n,k) = fibonacci(k+1)*binomial(n,k); \\ G. C. Greubel, Jul 11 2019
    
  • Sage
    [[fibonacci(k+1)*binomial(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 11 2019
    

Formula

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 26 2012
G.f. (-1+x)/(-1+2*x+x*y-x^2*y+x^2*y^2-x^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k+1).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+1).
Sum_{k=0..n} (-1)^k*T(n,k) = Fibonacci(n-1). (End)

Extensions

Offset set to 0 by Alois P. Heinz, Aug 11 2015

A094435 Triangular array read by rows: T(n,k) = Fibonacci(k)*C(n,k), k = 1...n; n>=1.

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 4, 6, 8, 3, 5, 10, 20, 15, 5, 6, 15, 40, 45, 30, 8, 7, 21, 70, 105, 105, 56, 13, 8, 28, 112, 210, 280, 224, 104, 21, 9, 36, 168, 378, 630, 672, 468, 189, 34, 10, 45, 240, 630, 1260, 1680, 1560, 945, 340, 55, 11, 55, 330, 990, 2310, 3696, 4290, 3465, 1870, 605, 89
Offset: 1

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n) and n-th alternating row sum is F(n).

Examples

			First few rows:
  1;
  2   1;
  3   3   2;
  4   6   8   3;
  5, 10, 20, 15,  5;
  6, 15, 40, 45, 30, 8;
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Binomial(n,k)*Fibonacci(k) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(binomial(n,k)*fibonacci(k), k=1..n), n=1..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Table[Fibonacci[k]*Binomial[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(k);
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k).
Sum_{k=1..n} binomial(n,k)*Fibonacci(k) = Fibonacci(2*n).
Sum_{k=1..n} (-1)^(k-1)*binomial(n,k)*Fibonacci(k) = Fibonacci(n). (End)

A094437 Triangular array T(n,k) = Fibonacci(k+2)*C(n,k), k=0..n, n>=0.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 9, 5, 1, 8, 18, 20, 8, 1, 10, 30, 50, 40, 13, 1, 12, 45, 100, 120, 78, 21, 1, 14, 63, 175, 280, 273, 147, 34, 1, 16, 84, 280, 560, 728, 588, 272, 55, 1, 18, 108, 420, 1008, 1638, 1764, 1224, 495, 89, 1, 20, 135, 600, 1680, 3276, 4410, 4080, 2475, 890
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+2) and n-th alternating row sum is -F(n-2).
A094437 is jointly generated with A094436 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+x*v(n-1)x and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. [Clark Kimberling, Feb 26 2012]
Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 28 2012

Examples

			First four rows:
  1;
  1 2;
  1 4 3;
  1 6 9 5;
sum = 1+6+9+5=21=F(8); alt.sum = 1-6+9-5=-1=-F(1).
T(3,2)=F(4)*C(3,2)=3*3=9.
From _Philippe Deléham_, Apr 28 2012: (Start)
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, ...) begins :
  1;
  1, 0;
  1, 2,  0;
  1, 4,  3,  0;
  1, 6,  9,  5, 0;
  1, 8, 18, 20, 8, 0; . (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(k+2) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(k+2)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A094436 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A094437 *)
    (* Second program *)
    Table[Fibonacci[k+2]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(k+2);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From Philippe Deléham, Apr 28 2012: (Start)
As DELTA-triangle T(n,k):
G.f.: (1-x-y*x+2*y*x^2-y^2*x^2)/(1-2*x-y*x+x^2+y*x^2-y^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k+2).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+2).
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = Fibonacci(n-2). (End)

A094442 Triangular array T(n,k) = Fibonacci(n+2-k)*C(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 5, 9, 6, 1, 8, 20, 18, 8, 1, 13, 40, 50, 30, 10, 1, 21, 78, 120, 100, 45, 12, 1, 34, 147, 273, 280, 175, 63, 14, 1, 55, 272, 588, 728, 560, 280, 84, 16, 1, 89, 495, 1224, 1764, 1638, 1008, 420, 108, 18, 1, 144, 890, 2475, 4080, 4410, 3276, 1680, 600, 135, 20, 1
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Triangle of coefficients of polynomials v(n,x) jointly generated with A094441; see the Formula section.
Column 1: Fibonacci numbers, A000045
Row sums: even-indexed Fibonacci numbers
Alternating row sum: signed Fibonacci numbers
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 02 2012

Examples

			First five rows:
  1;
  2,  1;
  3,  4,  1;
  5,  9,  6, 1;
  8, 20, 18, 8, 1;
First three polynomials v(n,x): 1, 2 + x, 3 + 4x + x^2.
From _Philippe Deléham_, Apr 02 2012: (Start)
(0, 2, -1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, ...) begins:
  1;
  0, 1;
  0, 2,  1;
  0, 3,  4,  1;
  0, 5,  9,  6, 1;
  0, 8, 20, 18, 8, 1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+2) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(n-k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(n-k+2)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A094441 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A094442 *)
    (* Second program *)
    Table[Fibonacci[n-k+2]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(n-k+2);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(n-k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

Let u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = u(n-1,x) + (x+1)*v(n-1, x), where u(1,x)=1, v(1,x)=1 then the coefficients of the polynomials of v(n,x) produce this sequence.
T(n,k) = T(n-1, k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1) - T(n-2,k-2), T(1,0) = T(2,1) = 1, T(2,0) = 2 and T(n,k) = 0 if k < 0 or if k >= n. - Philippe Deléham, Apr 02 2012
From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+2).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+2)
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = (-1)^n * Fibonacci(n-2). (End)

A094439 Triangular array T(n,k) = Fibonacci(k+4)*C(n,k), k=0..n, n>=0.

Original entry on oeis.org

3, 3, 5, 3, 10, 8, 3, 15, 24, 13, 3, 20, 48, 52, 21, 3, 25, 80, 130, 105, 34, 3, 30, 120, 260, 315, 204, 55, 3, 35, 168, 455, 735, 714, 385, 89, 3, 40, 224, 728, 1470, 1904, 1540, 712, 144, 3, 45, 288, 1092, 2646, 4284, 4620, 3204, 1296, 233, 3, 50, 360, 1560, 4410, 8568, 11550, 10680, 6480, 2330, 377
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+4) and n-th alternating row sum is -F(n-4).

Examples

			First few rows:
  3;
  3,  5;
  3, 10,  8;
  3, 15, 24,  13;
  3, 20, 48,  52,  21;
  3, 25, 80, 130, 105, 34;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)* Fibonacci(k+4) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(k+4): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(k+4)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Table[Fibonacci[k+4]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(k+4);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(k+4) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n,k)*Fibonacci(k+4).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+4).
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = Fibonacci(n-4). (End)

A094443 Triangular array T(n,k) = Fibonacci(n+3-k)*C(n,k), k=0..n, n>=0.

Original entry on oeis.org

2, 3, 2, 5, 6, 2, 8, 15, 9, 2, 13, 32, 30, 12, 2, 21, 65, 80, 50, 15, 2, 34, 126, 195, 160, 75, 18, 2, 55, 238, 441, 455, 280, 105, 21, 2, 89, 440, 952, 1176, 910, 448, 140, 24, 2, 144, 801, 1980, 2856, 2646, 1638, 672, 180, 27, 2, 233, 1440, 4005, 6600, 7140, 5292, 2730, 960, 225, 30, 2
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Examples

			First few rows:
   2;
   3,  2;
   5,  6,  2;
   8, 15,  9,  2;
  13, 32, 30, 12,  2;
  21, 65, 80, 50, 15, 2;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+3) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(n-k+3): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat): seq(seq(fibonacci(n-k+3)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Table[Fibonacci[n-k+3]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(n-k+3);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(n-k+3) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+3).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+3).
Sum_{k=0..n} (-1)^k * T(n,k) = (-1)^n * Fibonacci(n-3). (End)

A094444 Triangular array T(n,k) = Fibonacci(n+4-k)*C(n,k), k=0..n, n>=0.

Original entry on oeis.org

3, 5, 3, 8, 10, 3, 13, 24, 15, 3, 21, 52, 48, 20, 3, 34, 105, 130, 80, 25, 3, 55, 204, 315, 260, 120, 30, 3, 89, 385, 714, 735, 455, 168, 35, 3, 144, 712, 1540, 1904, 1470, 728, 224, 40, 3, 233, 1296, 3204, 4620, 4284, 2646, 1092, 288, 45, 3, 377, 2330, 6480, 10680, 11550, 8568, 4410, 1560, 360, 50, 3
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Row sums are Fibonacci numbers.
Row sums with alternating signs are Fibonacci numbers or their negatives.

Examples

			First few rows:
   3;
   5,   3;
   8,  10,   3;
  13,  24,  15,  3;
  21,  52,  48, 20,  3;
  34, 105, 130, 80, 25, 3;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+4) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(n-k+4): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(n-k+4)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Table[Fibonacci[n-k+4]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(n-k+4);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(n-k+4) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+4).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+4).
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = (-1)^n * Fibonacci(n-4). (End)
Showing 1-9 of 9 results.