A111125
Triangle read by rows: T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.
Original entry on oeis.org
1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 30, 27, 9, 1, 11, 55, 77, 44, 11, 1, 13, 91, 182, 156, 65, 13, 1, 15, 140, 378, 450, 275, 90, 15, 1, 17, 204, 714, 1122, 935, 442, 119, 17, 1, 19, 285, 1254, 2508, 2717, 1729, 665, 152, 19, 1, 21, 385, 2079, 5148, 7007, 5733, 2940, 952, 189, 21, 1
Offset: 0
Triangle T(k,s) begins:
k\s 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 3 1
2: 5 5 1
3: 7 14 7 1
4: 9 30 27 9 1
5: 11 55 77 44 11 1
6: 13 91 182 156 65 13 1
7: 15 140 378 450 275 90 15 1
8: 17 204 714 1122 935 442 119 17 1
9: 19 285 1254 2508 2717 1729 665 152 19 1
10: 21 385 2079 5148 7007 5733 2940 952 189 21 1
... Extended and reformatted by _Wolfdieter Lang_, Oct 18 2012
Application for Fibonacci numbers F_{(2*k+1)*n}, row k=3:
F_{7*n} = 7*(-1)^(3*n)*F_n + 14*(-1)^(4*n)*5*F_n^3 + 7*(-1)^(5*n)*5^2*F_n^5 + 1*(-1)^(6*n)*5^3*F_n^7, n>=0. - _Wolfdieter Lang_, Aug 24 2012
Example for the Z- and A-sequence recurrences of this Riordan triangle: Z = A217477 = [3,-4,12,-40,...]; T(4,0) = 3*7 -4*14 +12*7 -40*1 = 9. A = [1, 2, -1, 2, -5, 14, ..]; T(5,2) = 1*30 + 2*27 - 1*9 + 2*1= 77. _Wolfdieter Lang_, Oct 18 2012
Example for the (4*(k+1))-gon length ratio s(4*(k+1))(side/radius) as polynomial in the ratio rho(4*(k+1)) ((smallest diagonal)/side): k=0, s(4) = 1*rho(4) = sqrt(2); k=1, s(8) = -3*rho(8) + rho(8)^3 = sqrt(2-sqrt(2)); k=2, s(12) = 5*rho(12) - 5*rho(12)^3 + rho(12)^5, and C(12,x) = x^4 - 4*x^2 + 1, hence rho(12)^5 = 4*rho(12)^3 - rho(12), and s(12) = 4*rho(12) - rho(12)^3 = sqrt(2 - sqrt(3)). - _Wolfdieter Lang_, Oct 04 2013
Example for the recurrence for the signed triangle S(k,s)= ((-1)^(k-s))*T(k,s) (see the Aug 14 2014 comment above):
S(4,1) = 0 + (-2*2 - 1)*S(3,1) - (1/2)*(3*4^2*S(3,2) + 4*4^3*S(3,3)) = - 5*14 - 3*8*(-7) - 128*1 = -30. The recurrence from the Riordan A-sequence A115141 is S(4,1) = -7 -2*14 -(-7) -2*1 = -30. - _Wolfdieter Lang_, Aug 14 2014
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- R. Andre-Jeannin, A generalization of Morgan-Voyce polynomials, The Fibonacci Quarterly 32.3 (1994): 228-31.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group and Chebyshev polynomials, arXiv:2502.13673 [math.CO], 2025.
- K. Dilcher and K. B. Stolarsky, A Pascal-type triangle characterizing twin primes, Amer. Math. Monthly, 112 (2005), 673-681.
- P. Damianou , On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
- P. Damianou and C. Evripidou, Characteristic and Coxeter polynomials for affine Lie algebras, arXiv preprint arXiv:1409.3956 [math.RT], 2014.
- D. Jennings, Some Polynomial Identities for the Fibonacci and Lucas Numbers, Fib. Quart., 31(2) (1993), 134-137.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comp. 61 (1993), no. 203, 277-294.
- Yidong Sun, Numerical triangles and several classical sequences, Fib. Quart., Nov. 2005, pp. 359-370.
- T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, Tome 55(103), No.1, (2012) 95-103.
- Eric Weisstein's World of Mathematics, Morgan-Voyce polynomials
Mirror image of
A082985, which see for further references, etc.
-
[((2*n+1)/(n+k+1))*Binomial(n+k+1, 2*k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 01 2022
-
(* First program *)
u[1, x_]:=1; v[1, x_]:=1; z=16;
u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208513 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A111125 *) (* Clark Kimberling, Feb 28 2012 *)
(* Second program *)
T[n_, k_]:= ((2*n+1)/(2*k+1))*Binomial[n+k, 2*k];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 01 2022 *)
-
@CachedFunction
def T(n,k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 3*T(n-1,k) if n==1 else 2*T(n-1,k)
return T(n-1,k-1) - T(n-2,k) - h
A111125 = lambda n,k: (-1)^(n-k)*T(n,k)
for n in (0..9): [A111125(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
A111418
Right-hand side of odd-numbered rows of Pascal's triangle.
Original entry on oeis.org
1, 3, 1, 10, 5, 1, 35, 21, 7, 1, 126, 84, 36, 9, 1, 462, 330, 165, 55, 11, 1, 1716, 1287, 715, 286, 78, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 24310, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 92378, 75582, 50388
Offset: 0
From _Wolfdieter Lang_, Aug 05 2014: (Start)
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 3 1
2: 10 5 1
3: 35 21 7 1
4: 126 84 36 9 1
5: 462 330 165 55 11 1
6: 1716 1287 715 286 78 13 1
7: 6435 5005 3003 1365 455 105 15 1
8: 24310 19448 12376 6188 2380 680 136 17 1
9: 92378 75582 50388 27132 11628 3876 969 171 19 1
10: 352716 293930 203490 116280 54264 20349 5985 1330 210 21 1
...
Expansion examples (for the Todd polynomials see A084930 and a comment above):
(4*x)^2 = 10*Todd(n, 0) + 5*Todd(n, 1) + 1*Todd(n, 2) = 10*1 + 5*(-3 + 4*x) + 1*(5 - 20*x + 16*x^2).
(4*x)^3 = 35*1 + 21*(-3 + 4*x) + 7*(5 - 20*x + 16*x^2) + (-7 + 56*x - 112*x^2 +64*x^3)*1. (End)
---------------------------------------------------------------------
Production matrix is
3, 1,
1, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 0, 0, 1, 2, 1
- _Paul Barry_, Mar 08 2011
Application to odd powers of Fibonacci numbers F, row n=2:
F_l^5 = (10*(-1)^(2*(l+1))*F_l + 5*(-1)^(1*(l+1))*F_{3*l} + 1*F_{5*l})/5^2, l >= 0. - _Wolfdieter Lang_, Aug 24 2012
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012.
- A. Nkwanta, A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- Sun, Yidong; Ma, Luping Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
-
a111418 n k = a111418_tabl !! n !! k
a111418_row n = a111418_tabl !! n
a111418_tabl = map reverse a122366_tabl
-- Reinhard Zumkeller, Mar 14 2014
-
Table[Binomial[2*n+1, n-k], {n,0,10}, {k,0,n}] (* G. C. Greubel, May 22 2017 *)
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 3, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
A003516
Binomial coefficients C(2n+1, n-2).
Original entry on oeis.org
1, 7, 36, 165, 715, 3003, 12376, 50388, 203490, 817190, 3268760, 13037895, 51895935, 206253075, 818809200, 3247943160, 12875774670, 51021117810, 202112640600, 800472431850, 3169870830126, 12551759587422
Offset: 2
For n=4, C(2*4+1,4-2) = C(9,2) = 9*8/2 = 36, so a(4) = 36. - _Michael B. Porter_, Sep 10 2016
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 2..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Heidi Goodson, An Identity for Vertically Aligned Entries in Pascal's Triangle, arXiv:1901.08653 [math.CO], 2019.
- Milan Janjic, Two Enumerative Functions.
- Toufik Mansour and Mark Shattuck, Counting occurrences of subword patterns in non-crossing partitions, Art Disc. Appl. Math. (2022).
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3. - From _N. J. A. Sloane_, Sep 16 2012
- Daniel W. Stasiuk, An Enumeration Problem for Sequences of n-ary Trees Arising from Algebraic Operads, Master's Thesis, University of Saskatchewan-Saskatoon (2018).
Cf. triangle
A114492 - Dyck paths with k DDUU's.
-
List([2..25], n-> Binomial(2*n+1, n-2)); # G. C. Greubel, Mar 21 2019
-
[Binomial(2*n+1,n-2): n in [2..25]]; // Vincenzo Librandi, Apr 13 2011
-
CoefficientList[ Series[ 32/(((Sqrt[1 - 4 x] + 1)^5)*Sqrt[1 - 4 x]), {x, 0, 25}], x] (* Robert G. Wilson v, Aug 08 2011 *)
Table[Binomial[2*n +1,n-2], {n,2,25}] (* G. C. Greubel, Jan 23 2017 *)
-
{a(n) = binomial(2*n+1, n-2)}; \\ G. C. Greubel, Mar 21 2019
-
[binomial(2*n+1, n-2) for n in (2..25)] # G. C. Greubel, Mar 21 2019
A030053
a(n) = binomial(2n+1,n-3).
Original entry on oeis.org
1, 9, 55, 286, 1365, 6188, 27132, 116280, 490314, 2042975, 8436285, 34597290, 141120525, 573166440, 2319959400, 9364199760, 37711260990, 151584480450, 608359048206, 2438362177020, 9762479679106, 39049918716424, 156077261327400, 623404249591760
Offset: 3
G.f. = x^3 + 9*x^4 + 55*x^5 + 286*x^6 + 1365*x^7 + 6188*x68 + ...
-
[Binomial(2*n+1,n-3): n in [3..30]]; // Vincenzo Librandi, Aug 11 2015
-
Table[Binomial[2*n + 1, n - 3], {n, 3, 20}] (* T. D. Noe, Apr 03 2014 *)
Rest[Rest[Rest[CoefficientList[Series[128 x^3 / ((1 - Sqrt[1 - 4 x])^7 Sqrt[1 - 4 x]) + (-1 / x^4 + 5 / x^3 - 6 / x^2 + 1 / x), {x, 0, 40}], x]]]] (* Vincenzo Librandi, Aug 11 2015 *)
-
a(n) = binomial(2*n+1,n-3); \\ Joerg Arndt, May 08 2013
A030054
a(n) = binomial(2n+1,n-4).
Original entry on oeis.org
1, 11, 78, 455, 2380, 11628, 54264, 245157, 1081575, 4686825, 20030010, 84672315, 354817320, 1476337800, 6107086800, 25140840660, 103077446706, 421171648758, 1715884494940, 6973199770790, 28277527346376, 114456658306760, 462525733568080, 1866442158555975
Offset: 4
-
seq(binomial(2*n+1,n-4),n=4..50); # Robert Israel, Jun 11 2019
-
Table[Binomial[2n+1,n-4],{n,4,40}] (* Harvey P. Dale, Mar 31 2011 *)
-
vector(30, n, m=n+4; binomial(2*m+1,m-4)) \\ Michel Marcus, Aug 11 2015
A217478
Triangle of coefficients of polynomials providing the second term of the numerator for the generating function for odd powers (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;1,x^2).
Original entry on oeis.org
-2, 3, -4, -4, 10, -6, 5, -20, 21, -8, -6, 35, -56, 36, -10, 7, -56, 126, -120, 55, -12, -8, 84, -252, 330, -220, 78, -14, 9, -120, 462, -792, 715, -364, 105, -16, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 11, -220, 1287, -3432, 5005, -4368, 2380, -816, 171, -20
Offset: 1
The triangle a(m,k) begins:
m\k 0 1 2 3 4 5 6 7 8 9 ...
1: -2
2: 3 -4
3: -4 10 -6
4: 5 -20 21 -8
5: -6 35 -56 36 -10
6: 7 -56 126 -120 55 -12
7: 8 84 -252 330 -220 78 -14
8: 9 -120 462 -792 715 -364 105 -16
9: -10 165 -792 1716 -2002 1365 -560 136 -18
10: 11 -220 1287 -3432 5005 -4368 2380 -816 171 -20
...
P(2;1,x^2) = 3 - 4*x^2, appears in the second term of the numerator of the o.g.f. for S(n,x)^5 which is Z(2;z,x) = (1+z^2)^2 + (1+z^2)*(-x*z)*(3-4*x^2) + ((-x*z)^2)*2*(-4 +3*x^2). The last term is taken from row m=2 of A217479. The denominator is N(2;z,x) = product((1+z^2)-z*x*tau(k,x), k=0..2). This checks with [1,x^5,-1+5*x^2-10*x^4+10*x^6-5*x^8
+x^10,-32*x^5+80*x^7-80*x^9+40*x^11-10* x^13+x^15,...] for S(n,x)^5, n=0,1,2,3,...
A217479
Array of coefficients of polynomials providing the third term of the numerator of the generating function for odd powers (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;2,x^2), m >= 2.
Original entry on oeis.org
-8, 6, -27, 65, -56, 15, -61, 260, -469, 415, -176, 28, -114, 736, -2104, 3214, -2838, 1456, -400, 45, -190, 1714, -6988, 15699, -21461, 18760, -10614, 3768, -760, 66, -293, 3507, -19195, 58807, -112123, 141441, -122168, 73185, -30077, 8107, -1288, 91
Offset: 2
The array a(m,k) starts:
m\k 0 1 2 3 4 5 6 7 8 9 ...
2: -8 6
3: -27 65 -56 15
4: -61 260 -469 415 -176 28
5: -114 736 -2104 3214 -2838 1456 -400 45
6: -190 1714 -6988 15699 -21461 18760 -10614 3768 -760 66
...
Row m=7: -293, 3507, -19195, 58807, -112123, 141441, -122168, 73185, -30077, 8107, -1288, 91.
Row m=8: -427, 6536, -46102, 183762, -461654, 780716, -926345, 790773, -491397, 221760, -71139, 15405, -2016, 120.
Row 9: -596, 11346, -100077, 502036, -1600280, 3470116, -5352805, 6051236, -5110145, 3256825, -1568416, 564980, -148176, 26770, -2976, 153.
m=2: P(2;2,x^2) = tau(0,x)*tau(1,x) + tau(0,x)*tau(2,x) + tau(1,x)*tau(2,x) - (tau(0,x)+tau(1,x)+tau(2,x))*x^4 + (5 -10*x^2 + 10*x^4 - 5*x^6 + x^8) = -8 + 6*x^2 = 2*(-4 + 3*x^2).
The numerator of the o.g.f. for S(n,x)^5 is Z(2;z,x) = (1+z^2)^2 + (1+z^2)*(-x*z)*(3-4*x^2) + (-x*z)^2*2*(-4 + 3*x^2), where the last bracket in the second term comes from row m=2 of A217478. The denominator is N(2;z,x) = product((1+z^2)-z*x*tau(k,x), k=0..2). See the example of A217478.
Showing 1-7 of 7 results.
Comments