A002054 Binomial coefficient C(2n+1, n-1).
1, 5, 21, 84, 330, 1287, 5005, 19448, 75582, 293930, 1144066, 4457400, 17383860, 67863915, 265182525, 1037158320, 4059928950, 15905368710, 62359143990, 244662670200, 960566918220, 3773655750150, 14833897694226, 58343356817424, 229591913401900
Offset: 1
Examples
G.f. = x + 5*x^2 + 21*x^3 + 84*x^4 + 330*x^5 + 1287*x^6 + 5005*x^7 + ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- George Grätzer, General Lattice Theory. Birkhauser, Basel, 1998, 2nd edition, p. 474, line -3.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 1..100 computed by T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- F. R. Bernhart and N. J. A. Sloane, Emails, April-May 1994.
- Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Discrete Mathematics, Vol. 340, No. 10 (2017), pp. 2550-2558; preprint, 2017.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
- David Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- Arthur Cayley, On the partitions of a polygon, Proc. London Math. Soc., Vol. 22 (1891), pp. 237-262 = Collected Mathematical Papers, Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.
- Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020.
- Colin Defant, Proofs of Conjectures about Pattern-Avoiding Linear Extensions, arXiv:1905.02309 [math.CO], 2019.
- Emeric Deutsch, Dyck path enumeration, Discrete Math., Vol. 204, No. 1-3 (1999), pp. 167-202.
- Gennady Eremin, Dyck Numbers, IV. Nested patterns in OEIS A036991, arXiv:2306.10318 [math.CO], 2023. See (5) p. 7.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, J. Int. Seq., Vol. 17 (2014), Article 14.1.5; arXiv preprint, arXiv:1203.6792 [math.CO], 2012.
- Xiaoyu He, Emily Huang, Ihyun Nam and Rishubh Thaper, Shuffle Squares and Reverse Shuffle Squares, arXiv:2109.12455 [math.CO], 2021.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- Milan Janjic, Two Enumerative Functions.
- Werner Krandick, Trees and jumps and real roots, J. Computational and Applied Math., Vol. 162, No. 1 (2004), pp. 51-55.
- Toufik Mansour, Statistics on Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.
- Toufik Mansour and Alek Vainshtein, Counting occurrences of 123 in a permutation, arXiv:math/0105073 [math.CO], 2001.
- Henri Mühle, Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices, arXiv:1509.06942 [math.CO], 2015.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3.
- John Noonan and Doron Zeilberger, The Enumeration of Permutations With a Prescribed Number of ``Forbidden'' Patterns, arXiv:math/9808080 [math.CO], 1998.
- Oliver Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, arXiv:1209.1355 [math.CO], 2012-2014.
- Oliver Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, J. Combin. Theory A, Vol. 125 (2014), pp. 357-378.
- Karol Penson, Hausdorff moment problems for combinatorial numbers: heuristics via Meijer G-functions, Nov. 2022.
- Ronald C. Read, On general dissections of a polygon, Aequationes Mathematicae, Vol. 18, No. 1-2 (1978), pp. 370-388; Preprint, 1974.
- Mark Shattuck, Enumeration of non-crossing partitions according to subwords with repeated letters, arXiv:2303.06300 [math.CO], 2023.
- Richard P. Stanley, Polygon dissections and standard Young tableaux, J. Comb. Theory, Ser. A, Vol. 76 , No. 1 (1996), pp. 175-177.
- Daniel W. Stasiuk, An Enumeration Problem for Sequences of n-ary Trees Arising from Algebraic Operads, Master's Thesis, University of Saskatchewan-Saskatoon (2018).
- A. Vogt, Resummation of small-x double logarithms in QCD: semi-inclusive electron-positron annihilation, arXiv:1108.2993 [hep-ph], 2011.
- N. J. Wildberger and Dean Rubine, A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode, Amer. Math. Monthly (2025). See section 12.
Crossrefs
Programs
-
GAP
List([1..25],n->Binomial(2*n+1,n-1)); # Muniru A Asiru, Aug 09 2018
-
Magma
[Binomial(2*n+1, n-1): n in [1..30]]; // Vincenzo Librandi, Apr 20 2015
-
Maple
with(combstruct): seq((count(Composition(2*n+2), size=n)), n=1..24); # Zerinvary Lajos, May 03 2007
-
Mathematica
CoefficientList[Series[8/(((Sqrt[1-4x] +1)^3)*Sqrt[1-4x]), {x,0,22}], x] (* Robert G. Wilson v, Aug 08 2011 *) a[ n_]:= Binomial[2 n + 1, n - 1]; (* Michael Somos, Apr 25 2014 *)
-
PARI
{a(n) = binomial( 2*n+1, n-1)};
-
Python
from _future_ import division A002054_list, b = [], 1 for n in range(1,10**3): A002054_list.append(b) b = b*(2*n+2)*(2*n+3)//(n*(n+3)) # Chai Wah Wu, Jan 26 2016
-
Sage
[binomial(2*n+1, n-1) for n in (1..25)] # G. C. Greubel, Mar 22 2019
Formula
a(n) = Sum_{j=0..n-1} binomial(2*j, j) * binomial(2*n - 2*j, n-j-1)/(j+1). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
G.f.: z*C^4/(2-C), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function. - Emeric Deutsch, Jul 05 2003
From Wolfdieter Lang, Jan 09 2004: (Start)
a(n) = binomial(2*n+1, n-1) = n*C(n+1)/2, C(n)=A000108(n) (Catalan).
G.f.: (1 - 2*x - (1-3*x)*c(x))/(x*(1-4*x)) with g.f. c(x) of A000108. (End)
G.f.: z*C(z)^3/(1-2*z*C(z)), where C(z) is the g.f. of Catalan numbers. - José Luis Ramírez Ramírez, Apr 19 2015
G.f.: 2F1(5/2, 2; 4; 4*x). - R. J. Mathar, Aug 09 2015
D-finite with recurrence: a(n+1) = a(n)*(2*n+3)*(2*n+2)/(n*(n+3)). - Chai Wah Wu, Jan 26 2016
From Ilya Gutkovskiy, Aug 30 2016: (Start)
E.g.f.: (BesselI(0,2*x) + (1 - 1/x)*BesselI(1,2*x))*exp(2*x).
a(n) ~ 2^(2*n+1)/sqrt(Pi*n). (End)
a(n) = (1/(n+1))*Sum_{i=0..n-1} (n+1-i)*binomial(2n+2,i), n >= 1. - Taras Goy, Aug 09 2018
G.f.: (x - 1 + (1 - 3*x)/sqrt(1 - 4*x))/(2*x^2). - Michael Somos, Jul 28 2021
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=1} 1/a(n) = 5/3 - 2*Pi/(9*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 52*log(phi)/(5*sqrt(5)) - 7/5, where phi is the golden ratio (A001622). (End)
a(n) = A001405(2*n+1) - A000108(n+1), n >= 1 (from Eremin link, page 7). - Gennady Eremin, Sep 05 2023
G.f.: x/(1 - 4*x)^2 * c(-x/(1 - 4*x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Feb 03 2024
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * sqrt(x)*(x - 3)/sqrt(4 - x) (see Penson).
G.f. x*/sqrt(1 - 4*x) * c(x)^3. (End)
Comments