cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A094583 Erroneous version of A002058.

Original entry on oeis.org

2, 14, 72, 330, 1430, 6006, 24052, 100776, 396800, 1634380, 6547520
Offset: 5

Views

Author

Keywords

References

  • A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.

A286785 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 2, 5, 2, 14, 14, 2, 42, 72, 27, 2, 132, 330, 220, 44, 2, 429, 1430, 1430, 520, 65, 2, 1430, 6006, 8190, 4550, 1050, 90, 2, 4862, 24752, 43316, 33320, 11900, 1904, 119, 2, 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2, 58786, 406980, 1046520, 1302336, 854658, 301644, 55860, 5040, 189, 2, 208012, 1634380, 4903140, 7354710, 6056820, 2826516, 743820, 106260, 7590, 230, 2
Offset: 0

Views

Author

Gheorghe Coserea, May 15 2017

Keywords

Comments

Row n>0 contains n terms.
T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the GW approximation of the polarization function in a many-body theory of fermions with two-body interaction (see Molinari link).

Examples

			A(x;t) = 1 + 2*x + (5 + 2*t)*x^2 + (14 + 14*t + 2*t^2)*x^3 + ...
Triangle starts:
   n\k |     0       1       2       3       4      5     6    7  8
  -----+-----------------------------------------------------------
   0   |     1;
   1   |     2;
   2   |     5,      2;
   3   |    14,     14,      2;
   4   |    42,     72,     27,      2;
   5   |   132,    330,    220,     44,      2;
   6   |   429,   1430,   1430,    520,     65,     2;
   7   |  1430,   6006,   8190,   4550,   1050,    90,    2;
   8   |  4862,  24752,  43316,  33320,  11900,  1904,  119,   2;
   9   | 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2;
		

Crossrefs

Programs

  • Maxima
    T(n,k):=(binomial(n-1,k)*binomial(2*(n+1),n-k))/(n+1); /* Vladimir Kruchinin, Jan 14 2022 */
  • PARI
    A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x;
    A286785_ser(N,t='t) = 1/(1-x*A286784_ser(N,t))^2;
    concat(apply(p->Vecrev(p), Vec(A286785_ser(12))))
    

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n = 1/(1-x*s)^2, where s(x;t) = A286784(x;t) and P_n(t) = Sum_{k=0..n-1} T(n,k)*t^k for n>0.
A000108(n+1) = T(n,0), A002058(n+3) = T(n,1), A014106(n-1) = T(n,n-2), A006013(n) = P_n(1), A211789(n+1) = P_n(2).
T(n,k) = C(n-1,k)*C(2*n+2,n-k)/(n+1). - Vladimir Kruchinin, Jan 14 2022

A002060 Number of partitions of an n-gon into (n-5) parts.

Original entry on oeis.org

4, 60, 550, 4004, 25480, 148512, 813960, 4263600, 21573816, 106234700, 511801290, 2421810300, 11289642000, 51967090560, 236635858800, 1067518772640, 4776759725400, 21221827263000, 93687293423724, 411270420524040, 1796296260955504, 7809983743284800, 33816739954270000
Offset: 7

Views

Author

Keywords

Comments

a(n) = V(r=n,k=n-5), 4th subdiagonal of the triangle of V on page 240.
It appears that V(r=15,k=10) in the Cayley table is an error, so the sequence was intended to be 4, 60, 550, 4004, 25480, 148512, 813960, 4263600, 21573816, 106234700, 511801290, 2421810300, 11289642000, 51967090560, 236635858800... - R. J. Mathar, Nov 26 2011

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    V := proc(r,k)
            local a ,t;
            a := k-1;
            for t from k-2 to 1 by -1 do
                    a := a*(r+t)/(t+2) ;
            end do:
            for t from 3 to k+1 do
                    a := a*(r-t)/(k-t+2) ;
            end do:
            a ;
    end proc:
    A002060 := proc(n)
            V(n,n-5) ;
    end proc:
    seq(A002060(n),n=7..25) ; # R. J. Mathar, Nov 26 2011
  • Mathematica
    V[r_, k_] := Module[{a, t}, a = k - 1;
       For[t = k - 2, t >= 1, t--, a = a*(r + t)/(t + 2)];
       For[t = 3, t <= k + 1, t++, a = a*(r - t)/(k - t + 2)];
       a];
    A002060[n_] := V[n, n - 5];
    Table[A002060[n], {n, 7, 29}] (* Jean-François Alcover, Mar 10 2023, after R. J. Mathar *)

Extensions

More terms from Hugo Pfoertner, Dec 26 2021

A002059 Number of partitions of an n-gon into (n-4) parts.

Original entry on oeis.org

3, 32, 225, 1320, 7007, 34944, 167076, 775200, 3517470, 15690048, 69052555, 300638520, 1297398375, 5557977600, 23663585880, 100222246080, 422559514170, 1774647576000, 7427639542050, 30994292561232, 128989359164358
Offset: 6

Views

Author

Keywords

Comments

Second subdiagonal of the table of values of V(r,k) on page 240.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = (n-3) * binomial(2n-6,n). - Gill Barequet, Nov 09 2011
9*n*(n-6)*a(n) + 2*(-17n^2+90n-133)*a(n-2) - 4*(n-4)(2n-9)*a(n-2) = 0. - R. J. Mathar, Nov 26 2011
G.f.: 64*x^6*(2*x+3*sqrt(1-4x))/( (1+sqrt(1-4x))^6 * (1-4x)^(3/2)). - R. J. Mathar, Nov 27 2011
a(n) ~ 4^n*sqrt(n)/(64*sqrt(Pi)). - Ilya Gutkovskiy, Apr 11 2017

A259476 Cayley's triangle of V numbers; triangle V(n,k), n >= 4, n <= k <= 2*n-4, read by rows.

Original entry on oeis.org

1, 2, 4, 3, 14, 14, 4, 32, 72, 48, 5, 60, 225, 330, 165, 6, 100, 550, 1320, 1430, 572, 7, 154, 1155, 4004, 7007, 6006, 2002, 8, 224, 2184, 10192, 25480, 34944, 24752, 7072, 9, 312, 3822, 22932, 76440, 148512, 167076, 100776, 25194, 10, 420, 6300, 47040, 199920, 514080, 813960, 775200, 406980, 90440, 11, 550, 9900, 89760, 471240, 1534896, 3197700, 4263600, 3517470, 1634380, 326876
Offset: 4

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Examples

			Triangle begins:
  1;
     2, 4;
        3, 14, 14;
            4, 32, 72,  48;
                5, 60, 225, 330,  165;
                    6, 100, 550, 1320, 1430, 572;
  ...
		

Crossrefs

Diagonals give A002057, A002058, A002059, A002060.
Row sums give A065096 (with a different offset).

Programs

  • Maple
    V := proc(n,x)
        local X,g,i ;
        X := x^2/(1-x) ;
        g := X^n ;
        for i from 1 to n-2 do
            g := diff(g,x) ;
        end do;
        x^2*g*2*(n-1)/n! ;
    end proc;
    A259476 := proc(n,k)
        V(k-n+2,x) ;
        coeftayl(%,x=0,n+2) ;
    end proc:
    for n from 4 to 14 do
        for k from n to 2*n-4 do
            printf("%d,",A259476(n,k)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 09 2015
  • Mathematica
    T[n_, m_] := 2 Binomial[m, n] Binomial[n-2, m-n+2]/(n-2);
    Table[T[n, m], {n, 4, 14}, {m, n, 2n-4}] // Flatten (* Jean-François Alcover, Apr 15 2023, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if n<4 then 0 else (2*binomial(m,n)*binomial(n-2,m-n+2))/(n-2); /* Vladimir Kruchinin, Jan 27 2022 */

Formula

G.f.: (1-x*y*(1+2*y)-sqrt(1-2*x*y*(1+2*y)+x^2*y^2))^2/(4*y^4*(1+y)^2). - Vladimir Kruchinin, Jan 27 2022
T(n,m) = 2*C(m,n)*C(n-2,m-n+2)/(n-2), n>=4. - Vladimir Kruchinin, Jan 27 2022

A217234 Triangle of expansion coefficients of the sum of an n X n array with equal top row and left column (extended by the rule of Pascal's triangle) in terms of the top row elements.

Original entry on oeis.org

1, 1, 4, 1, 12, 6, 1, 40, 20, 8, 1, 140, 70, 30, 10, 1, 504, 252, 112, 42, 12, 1, 1848, 924, 420, 168, 56, 14, 1, 6864, 3432, 1584, 660, 240, 72, 16, 1, 25740, 12870, 6006, 2574, 990, 330, 90, 18, 1, 97240, 48620, 22880, 10010, 4004, 1430, 440, 110, 20
Offset: 1

Views

Author

J. M. Bergot, Sep 28 2012

Keywords

Comments

Define a finite n X n square array with indeterminate elements A(1, c), c=1..n in the top row, the same elements A(r,1 ) = A(1,r) in the first column, r=1..n, and the remaining elements defined by the Pascal triangle rule: A(r,c) = A(r,c-1)+A(r-1,c).
The triangle T(n,m) gives the coefficients in the formula Sum_{r=1..n} Sum_{c=1..n} A(r,c) = Sum_{m=1..n} T(n,m) * A(1,m).
It says how many times the first, second, third, etc. element of the first row (or the first column) contributes to the sum of the n X n array.

Examples

			1;
1,4;
1,12,6;
1,40,20,8;
1,140,70,30,10;
1,504,252,112,42,12;
1,1848,924,420,168,56,14;
1,6864,3432,1584,660,240,72,16;
1,25740,12870,6006,2574,990,330,90,18;
1,97240,48620,22880,10010,4004,1430,440,110,20;
		

Crossrefs

Cf. A100320 (2nd column), A000984 (third column), A162551 (third column), A024483 (4th column), A006659 (5th column), A002058 (6th column), A030662 (row sums).

Programs

  • Maple
    A217234_row := proc(n)
        local A,r,c,s ;
        A := array({},1..n,1..n) ;
        for r from 2 to n do
            A[r,1] := A[1,r] ;
        end do:
        for r from 2 to n do
            for c from 2 to n do
                A[r,c] := A[r,c-1]+A[r-1,c] ;
            end do:
        end do:
        s := add(add( A[r,c],c=1..n) ,r=1..n) ;
        for c from 1 to n do
            printf("%d,", coeff(s,A[1,c]) ) ;
        end do:
        return ;
    end proc:
    for n from 1 to 10 do
        A217234_row(n) ;
        printf(";\n") ;
    end do; # R. J. Mathar, Oct 13 2012
  • Mathematica
    A217234row [n_] := Module[{A, x, r, c, s }, A = Array[x, {n, n}]; Do[A[[r, 1]] = A[[1, r]], {r, 2, n}]; Do[A[[r, c]] = A[[r, c - 1]] + A[[r - 1, c]], {r, 2, n}, {c, 2, n}]; s = Sum[A[[r, c]], {r, 1, n}, {c, 1, n}]; If[n == 1, {1}, List @@ s /. x[, ] -> 1]];
    Table[A217234row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 04 2023, after R. J. Mathar *)

Extensions

Edited by R. J. Mathar, Oct 13 2012
Typo in data corrected by Jean-François Alcover, Nov 04 2023
Showing 1-6 of 6 results.