1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
A001791
a(n) = binomial coefficient C(2n, n-1).
Original entry on oeis.org
0, 1, 4, 15, 56, 210, 792, 3003, 11440, 43758, 167960, 646646, 2496144, 9657700, 37442160, 145422675, 565722720, 2203961430, 8597496600, 33578000610, 131282408400, 513791607420, 2012616400080, 7890371113950, 30957699535776, 121548660036300, 477551179875952
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Cornelius Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
- R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe and Matuszka Tamás, Table of n, a(n) for n = 0..1200 (terms n = 0..200 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Discrete Mathematics, Vol. 340, No. 10 (2017), pp. 2550-2558; preprint, 2016.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- Norman Biggs, Some odd graph theory, Second International Conference on Combinatorial Mathematics, Annals of the New York Academy of Sciences 319 (1979), 71-81.
- Miklós Bóna, Surprising Symmetries in Objects Counted by Catalan Numbers, Electronic J. Combin., 19 (2012), P62, eq. (6).
- Libor Caha and Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018.
- Jelena Đokic, A short note on the order of the double reduced 2-factor transfer digraph for rectangular grid graphs, arXiv:2308.04155 [math.CO], 2023.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 21.
- Guo-Niu Han, Enumeration of Standard Puzzles.
- Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260-288.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq., Vol. 17 (2014), Article 14.3.5.
- Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Advances in Applied Mathematics, Vol. 101 (2018), pp. 232-265; arXiv preprint, arXiv:1802.05990 [math.CO], 2018.
- Cornelius Lanczos, Applied Analysis. (Annotated scans of selected pages)
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3. - From _N. J. A. Sloane_, Sep 16 2012
- Mark Shattuck, Enumeration of non-crossing partitions according to subwords with repeated letters, arXiv:2303.06300 [math.CO], 2023.
- Zhi Lan Wang, Tautological integrals on symmetric products of curves, Acta Mathematica Sinica, English Series, Vol. 32, No. 8 (2016), pp. 901-910; arXiv preprint, arXiv:1506.08405 [math.AG], 2015-2016; alternative link.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A000302,
A000346,
A002054,
A008549,
A032443,
A088218,
A097805,
A163493,
A202736,
A345910.
-
List([0..30],n->Binomial(2*n,n-1)); # Muniru A Asiru, Aug 09 2018
-
[Binomial(2*n, n-1): n in [0..30]]; // Vincenzo Librandi, Apr 20 2015
-
Table[Binomial[2n,n-1],{n,0,30}] (* Harvey P. Dale, Jul 12 2012 *)
CoefficientList[ Series[(1 - 2x - Sqrt[1 - 4x])/(2x*Sqrt[1 - 4x]), {x, 0, 26}], x] (* Robert G. Wilson v, Aug 10 2018 *)
-
A001791(n):=binomial(2*n,n-1)$
makelist(A001791(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=if(n<1,0,(2*n)!/(n+1)!/(n-1)!)
A058622
a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n/2).
Original entry on oeis.org
0, 1, 1, 4, 5, 16, 22, 64, 93, 256, 386, 1024, 1586, 4096, 6476, 16384, 26333, 65536, 106762, 262144, 431910, 1048576, 1744436, 4194304, 7036530, 16777216, 28354132, 67108864, 114159428, 268435456, 459312152, 1073741824, 1846943453
Offset: 0
Yong Kong (ykong(AT)curagen.com), Dec 29 2000
G.f. = x + x^2 + 4*x^3 + 5*x^4 + 16*x^5 + 22*x^6 + 64*x^7 + 93*x^8 + ...
From _Gus Wiseman_, Jul 19 2021: (Start)
The a(1) = 1 through a(5) = 16 compositions with nonzero alternating sum:
(1) (2) (3) (4) (5)
(1,2) (1,3) (1,4)
(2,1) (3,1) (2,3)
(1,1,1) (1,1,2) (3,2)
(2,1,1) (4,1)
(1,1,3)
(1,2,2)
(1,3,1)
(2,1,2)
(2,2,1)
(3,1,1)
(1,1,1,2)
(1,1,2,1)
(1,2,1,1)
(2,1,1,1)
(1,1,1,1,1)
(End)
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.7)
The following relate to compositions with nonzero alternating sum:
- The version for alternating sum > 0 is
A027306.
- The version for alternating sum < 0 is
A294175.
- These compositions are ranked by
A345921.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A345197 counts compositions by length and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
Cf.
A000070,
A000097,
A007318,
A008549,
A034871,
A114121,
A120452,
A163493,
A210736,
A239830,
A344611.
-
[(2^n -(1+(-1)^n)*Binomial(n, Floor(n/2))/2)/2: n in [0..40]]; // G. C. Greubel, Aug 08 2022
-
Table[Sum[Binomial[n, Floor[n/2 + i]], {i, 1, n}], {n, 0, 32}] (* Geoffrey Critzer, Jul 16 2009 *)
a[n_] := If[n < 0, 0, (2^n - Boole[EvenQ @ n] Binomial[n, Quotient[n, 2]])/2]; (* Michael Somos, Nov 22 2014 *)
a[n_] := If[n < 0, 0, n! SeriesCoefficient[(Exp[2 x] - BesselI[0, 2 x])/2, {x, 0, n}]]; (* Michael Somos, Nov 22 2014 *)
Table[2^(n - 1) - (1 + (-1)^n) Binomial[n, n/2]/4, {n, 0, 40}] (* Eric W. Weisstein, Mar 21 2018 *)
CoefficientList[Series[2 x/((1-2x)(1 + 2x + Sqrt[(1+2x)(1-2x)])), {x, 0, 40}], x] (* Eric W. Weisstein, Mar 21 2018 *)
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]!=0&]],{n,0,15}] (* Gus Wiseman, Jul 19 2021 *)
-
a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n\2); \\ Michel Marcus, Dec 30 2015
-
my(x='x+O('x^100)); concat(0, Vec(2*x/((1-2*x)*(1+2*x+((1+2*x)*(1-2*x))^(1/2))))) \\ Altug Alkan, Dec 30 2015
-
from math import comb
def A058622(n): return (1<>1)>>1) if n else 0 # Chai Wah Wu, Aug 25 2025
-
[(2^n - binomial(n, n//2)*((n+1)%2))/2 for n in (0..40)] # G. C. Greubel, Aug 08 2022
A345197
Concatenation of square matrices A(n), each read by rows, where A(n)(k,i) is the number of compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2.
Original entry on oeis.org
1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 0, 0, 3, 4, 3, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0
The matrices for n = 1..7:
1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0
0 1 0 0 1 2 0 0 1 2 3 0 0 1 2 3 4 0 0 1 2 3 4 5 0
0 1 0 0 0 2 2 0 0 0 3 4 3 0 0 0 4 6 6 4 0 0
0 0 1 0 0 0 0 2 3 0 0 0 0 3 6 6 0 0
0 0 1 0 0 0 0 0 3 3 0 0 0
0 0 0 1 0 0 0
Matrix n = 5 counts the following compositions:
i=-3: i=-1: i=1: i=3: i=5:
-----------------------------------------------------------------
k=1: | 0 0 0 0 (5)
k=2: | (14) (23) (32) (41) 0
k=3: | 0 (131) (221)(122) (311)(113)(212) 0
k=4: | 0 (1211)(1112) (2111)(1121) 0 0
k=5: | 0 0 (11111) 0 0
The number of nonzero terms in each matrix appears to be
A000096.
The number of zeros in each matrix appears to be
A000124.
Row sums and column sums both appear to be
A007318 (Pascal's triangle).
Antidiagonal sums appear to be
A163493.
The reverse-alternating version is also
A345197 (this sequence).
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
Cf.
A000070,
A000097,
A000346,
A007318,
A008549,
A025047,
A032443,
A034871,
A114121,
A120452,
A238279,
A239830,
A344604.
-
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==k&&ats[#]==i&]],{n,0,6},{k,1,n},{i,-n+2,n,2}]
A003517
Number of permutations of [n+1] with exactly 1 increasing subsequence of length 3.
Original entry on oeis.org
1, 6, 27, 110, 429, 1638, 6188, 23256, 87210, 326876, 1225785, 4601610, 17298645, 65132550, 245642760, 927983760, 3511574910, 13309856820, 50528160150, 192113383644, 731508653106, 2789279908316, 10649977831752, 40715807302800, 155851062397940, 597261490737912
Offset: 2
a(3)=6 because the only permutations of 1234 with exactly 1 increasing subsequence of length 3 are 1423, 4123, 1342, 2314, 2341, 3124.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Bounce statistics for rational lattice paths, arXiv:1707.09918 [math.CO], 2017, p. 9.
- David Callan, A recursive bijective approach to counting permutations..., arXiv:math/0211380 [math.CO], 2002.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995), pp. 743-751.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995), pp. 743-751. [Annotated scanned copy]
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 31.
- Hilmar Haukur Gudmundsson, Dyck paths, standard Young tableaux, and pattern avoiding permutations, PU. M. A., Vol. 21 , No. 2 (2010), pp. 265-284 (see 4.3 p. 277).
- Richard K. Guy, Letter to N. J. A. Sloane, May 1990.
- Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article 00.1.6.
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- Markus Kuba and Alois Panholzer, Stirling permutations containing a single pattern of length three, Australasian Journal of Combinatorics, Vol. 74, No. 2 (2019), pp. 216-239.
- Nik Lygeros and Olivier Rozier, A new solution to the equation tau(rho) == 0 (mod p), J. Int. Seq., Vol. 13 (2010), Article 10.7.4.
- John Noonan, The number of permutations containing exactly one increasing subsequence of length three, Discrete Math., Vol. 152, No. 1-3 (1996), pp. 307-313.
- John Noonan and Doron Zeilberger, The Enumeration of Permutations With a Prescribed Number of "Forbidden" Patterns, arXiv:math/9808080 [math.CO], 1998.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90.
- L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90. [Annotated scanned copy]
- Zoran Sunic, Self describing sequences and the Catalan family tree, Elect. J. Combin., Vol. 10 (2003), Article N5.
T(n, n+6) for n=0, 1, 2, ..., array T as in
A047072.
Cf.
A001089,
A084249,
A000108,
A000245,
A002057,
A000344,
A000588,
A003518,
A003519,
A001392,
A001622,
A214292.
-
A003517List := proc(m) local A, P, n; A := [1]; P := [1,1,1,1,1];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
A := [op(A), P[-1]] od; A end: A003517List(25); # Peter Luschny, Mar 26 2022
-
f[x_] = (Sqrt[1 - 4 x] - 1)^6/(64 x^4); CoefficientList[Series[f[x], {x, 0, 25}], x][[3 ;; 26]] (* Jean-François Alcover, Jul 13 2011, after g.f. *)
Table[6 Binomial[2n+1,n-2]/(n+4),{n,2,30}] (* Harvey P. Dale, Feb 27 2012 *)
-
a(n)=6*binomial(2*n+1,n-2)/(n+4) \\ Charles R Greathouse IV, May 18 2015
-
x='x+O('x^50); Vec(x^2*((1-(1-4*x)^(1/2))/(2*x))^6) \\ Altug Alkan, Nov 01 2015
A002694
Binomial coefficients C(2n, n-2).
Original entry on oeis.org
1, 6, 28, 120, 495, 2002, 8008, 31824, 125970, 497420, 1961256, 7726160, 30421755, 119759850, 471435600, 1855967520, 7307872110, 28781143380, 113380261800, 446775310800, 1761039350070, 6943526580276, 27385657281648, 108043253365600
Offset: 2
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 2..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Henry Bottomley, Illustration for A000108, A001147, A002694, A067310 and A067311
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013. - _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
- O. Khorunzhiy, On high moments and the spectral norm of large dilute Wigner random matrices, arXiv:1107.5724 [math-ph], 2014.
- O. Khorunzhiy, On high moments and the spectral norm of large dilute Wigner random matrices, Zh. Mat. Fiz. Anal. Geom. 10 (1) (2014), pp. 64-125.
- W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From _N. J. A. Sloane_, Sep 16 2012
- V. Pilaud and J. Rué, Analytic combinatorics of chord and hyperchord diagrams with k crossings, arXiv:1307.6440 [math.CO], 2013; Adv. Appl. Math. 57 (2014) 60-100.
- Mark Shattuck, Enumeration of non-crossing partitions according to subwords with repeated letters, arXiv:2303.06300 [math.CO], 2023.
- Daniel W. Stasiuk, An Enumeration Problem for Sequences of n-ary Trees Arising from Algebraic Operads, Master's Thesis, University of Saskatchewan-Saskatoon (2018).
- T. Tao and Van Vu, Random matrices: localization of the eigenvalues and the necessity of four moments, arXiv:1005.2901 [math.PR], 2010-2011; Acta Math. Vietnam 36 (2) (2011) 431-449.
- N. J. Wildberger and Dean Rubine, A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode, Amer. Math. Monthly (2025). See section 12.
- Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
-
List([2..30], n-> Binomial(2*n,n-2)); # G. C. Greubel, Mar 21 2019
-
a002694 n = a007318' (2 * n) (n - 2) -- Reinhard Zumkeller, Jun 18 2012
-
[Binomial(2*n, n-2): n in [2..30]]; // Vincenzo Librandi, Apr 20 2015
-
a:=n->sum(binomial(n,j-1)*binomial(n,j+1),j=1..n): seq(a(n), n=2..25); # Zerinvary Lajos, Nov 26 2006
-
CoefficientList[ Series[ 16/(((Sqrt[1 - 4 x] + 1)^4)*Sqrt[1 - 4 x]), {x, 0, 23}], x] (* Robert G. Wilson v, Aug 08 2011 *)
Table[Binomial[2n,n-2],{n,2,30}] (* Harvey P. Dale, Jun 12 2014 *)
-
{a(n) = binomial(2*n,n-2)}; \\ G. C. Greubel, Mar 21 2019
-
[binomial(2*n,n-2) for n in (2..30)] # G. C. Greubel, Mar 21 2019
Comments