1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
A001791
a(n) = binomial coefficient C(2n, n-1).
Original entry on oeis.org
0, 1, 4, 15, 56, 210, 792, 3003, 11440, 43758, 167960, 646646, 2496144, 9657700, 37442160, 145422675, 565722720, 2203961430, 8597496600, 33578000610, 131282408400, 513791607420, 2012616400080, 7890371113950, 30957699535776, 121548660036300, 477551179875952
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Cornelius Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
- R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe and Matuszka Tamás, Table of n, a(n) for n = 0..1200 (terms n = 0..200 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Discrete Mathematics, Vol. 340, No. 10 (2017), pp. 2550-2558; preprint, 2016.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- Norman Biggs, Some odd graph theory, Second International Conference on Combinatorial Mathematics, Annals of the New York Academy of Sciences 319 (1979), 71-81.
- Miklós Bóna, Surprising Symmetries in Objects Counted by Catalan Numbers, Electronic J. Combin., 19 (2012), P62, eq. (6).
- Libor Caha and Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018.
- Jelena Đokic, A short note on the order of the double reduced 2-factor transfer digraph for rectangular grid graphs, arXiv:2308.04155 [math.CO], 2023.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 21.
- Guo-Niu Han, Enumeration of Standard Puzzles.
- Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260-288.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq., Vol. 17 (2014), Article 14.3.5.
- Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Advances in Applied Mathematics, Vol. 101 (2018), pp. 232-265; arXiv preprint, arXiv:1802.05990 [math.CO], 2018.
- Cornelius Lanczos, Applied Analysis. (Annotated scans of selected pages)
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3. - From _N. J. A. Sloane_, Sep 16 2012
- Mark Shattuck, Enumeration of non-crossing partitions according to subwords with repeated letters, arXiv:2303.06300 [math.CO], 2023.
- Zhi Lan Wang, Tautological integrals on symmetric products of curves, Acta Mathematica Sinica, English Series, Vol. 32, No. 8 (2016), pp. 901-910; arXiv preprint, arXiv:1506.08405 [math.AG], 2015-2016; alternative link.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A000302,
A000346,
A002054,
A008549,
A032443,
A088218,
A097805,
A163493,
A202736,
A345910.
-
List([0..30],n->Binomial(2*n,n-1)); # Muniru A Asiru, Aug 09 2018
-
[Binomial(2*n, n-1): n in [0..30]]; // Vincenzo Librandi, Apr 20 2015
-
Table[Binomial[2n,n-1],{n,0,30}] (* Harvey P. Dale, Jul 12 2012 *)
CoefficientList[ Series[(1 - 2x - Sqrt[1 - 4x])/(2x*Sqrt[1 - 4x]), {x, 0, 26}], x] (* Robert G. Wilson v, Aug 10 2018 *)
-
A001791(n):=binomial(2*n,n-1)$
makelist(A001791(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=if(n<1,0,(2*n)!/(n+1)!/(n-1)!)
A000346
a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).
Original entry on oeis.org
1, 5, 22, 93, 386, 1586, 6476, 26333, 106762, 431910, 1744436, 7036530, 28354132, 114159428, 459312152, 1846943453, 7423131482, 29822170718, 119766321572, 480832549478, 1929894318332, 7744043540348, 31067656725032, 124613686513778, 499744650202436
Offset: 0
G.f. = 1 + 5*x + 22*x^2 + 93*x^3 + 386*x^4 + 1586*x^5 + 6476*x^6 + ...
- T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
- Vijay Balasubramanian, Javier M. Magan, and Qingyue Wu, A Tale of Two Hungarians: Tridiagonalizing Random Matrices, arXiv:2208.08452 [hep-th], 2022.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- E. A. Bender, E. R. Canfield and R. W. Robinson, The enumeration of maps on the torus and the projective plane, Canad. Math. Bull., 31 (1988), 257-271; see p. 270.
- D. E. Davenport, L. K. Pudwell, L. W. Shapiro and L. C. Woodson, The Boundary of Ordered Trees, 2014.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 185
- R. K. Guy, Letter to N. J. A. Sloane
- Toufik Mansour and José L. Ramirez, Enumerations of polyominoes determined by Fuss-Catalan words, Australas. J. Combin. 81 (3) (2021) 447-457, table 1.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7. - From _N. J. A. Sloane_, Nov 25 2012
- D. Merlini, R. Sprugnoli and M. C. Verri, Waiting patterns for a printer, FUN with algorithm'01, Isola d'Elba, 2001.
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (A_n for s=2).
- Vera Posch, Correlators in Matrix Models, Master Thesis, Uppsala Univ. (Sweden 2023). See p. 44.
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- W. T. Tutte, On the enumeration of planar maps. Bull. Amer. Math. Soc. 74 1968 64-74.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218 (eq. 5, b=1).
- N. J. A. Sloane, Notes
Even bisection of
A294175 (without the first two terms).
The following relate to compositions of 2n with alternating sum k.
- The k > 0 case is counted by
A000302.
- The k <= 0 case is counted by
A000302.
- The k != 0 case is counted by
A000346 (this sequence).
- The k < 0 case is counted by
A008549.
- The k >= 0 case is counted by
A114121.
A086543 counts partitions with nonzero alternating sum (bisection:
A182616).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A001791,
A007318,
A025047,
A027306,
A032443,
A053754,
A120452,
A163493,
A239830,
A344611,
A345921.
-
[2^(2*n+1) - Binomial(2*n+1,n+1): n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
-
seq(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1), n=0..12); # Emanuele Munarini, Mar 16 2011
-
Table[2^(2n+1)-Binomial[2n,n](2n+1)/(n+1),{n,0,20}] (* Emanuele Munarini, Mar 16 2011 *)
a[ n_] := If[ n<-4, 0, (4^(n + 1) - Binomial[2 n + 2, n + 1]) / 2]; (* Michael Somos, Jan 25 2014 *)
-
makelist(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1),n,0,12); /* Emanuele Munarini, Mar 16 2011 */
-
{a(n) = if( n<-4, 0, n++; (2^(2*n) - binomial(2*n, n)) / 2)}; /* Michael Somos, Jan 25 2014 */
A002054
Binomial coefficient C(2n+1, n-1).
Original entry on oeis.org
1, 5, 21, 84, 330, 1287, 5005, 19448, 75582, 293930, 1144066, 4457400, 17383860, 67863915, 265182525, 1037158320, 4059928950, 15905368710, 62359143990, 244662670200, 960566918220, 3773655750150, 14833897694226, 58343356817424, 229591913401900
Offset: 1
G.f. = x + 5*x^2 + 21*x^3 + 84*x^4 + 330*x^5 + 1287*x^6 + 5005*x^7 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- George Grätzer, General Lattice Theory. Birkhauser, Basel, 1998, 2nd edition, p. 474, line -3.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 1..100 computed by T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- F. R. Bernhart and N. J. A. Sloane, Emails, April-May 1994.
- Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Discrete Mathematics, Vol. 340, No. 10 (2017), pp. 2550-2558; preprint, 2017.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
- David Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- Arthur Cayley, On the partitions of a polygon, Proc. London Math. Soc., Vol. 22 (1891), pp. 237-262 = Collected Mathematical Papers, Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.
- Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020.
- Colin Defant, Proofs of Conjectures about Pattern-Avoiding Linear Extensions, arXiv:1905.02309 [math.CO], 2019.
- Emeric Deutsch, Dyck path enumeration, Discrete Math., Vol. 204, No. 1-3 (1999), pp. 167-202.
- Gennady Eremin, Dyck Numbers, IV. Nested patterns in OEIS A036991, arXiv:2306.10318 [math.CO], 2023. See (5) p. 7.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, J. Int. Seq., Vol. 17 (2014), Article 14.1.5; arXiv preprint, arXiv:1203.6792 [math.CO], 2012.
- Xiaoyu He, Emily Huang, Ihyun Nam and Rishubh Thaper, Shuffle Squares and Reverse Shuffle Squares, arXiv:2109.12455 [math.CO], 2021.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- Milan Janjic, Two Enumerative Functions.
- Werner Krandick, Trees and jumps and real roots, J. Computational and Applied Math., Vol. 162, No. 1 (2004), pp. 51-55.
- Toufik Mansour, Statistics on Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.
- Toufik Mansour and Alek Vainshtein, Counting occurrences of 123 in a permutation, arXiv:math/0105073 [math.CO], 2001.
- Henri Mühle, Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices, arXiv:1509.06942 [math.CO], 2015.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3.
- John Noonan and Doron Zeilberger, The Enumeration of Permutations With a Prescribed Number of ``Forbidden'' Patterns, arXiv:math/9808080 [math.CO], 1998.
- Oliver Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, arXiv:1209.1355 [math.CO], 2012-2014.
- Oliver Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, J. Combin. Theory A, Vol. 125 (2014), pp. 357-378.
- Karol Penson, Hausdorff moment problems for combinatorial numbers: heuristics via Meijer G-functions, Nov. 2022.
- Ronald C. Read, On general dissections of a polygon, Aequationes Mathematicae, Vol. 18, No. 1-2 (1978), pp. 370-388; Preprint, 1974.
- Mark Shattuck, Enumeration of non-crossing partitions according to subwords with repeated letters, arXiv:2303.06300 [math.CO], 2023.
- Richard P. Stanley, Polygon dissections and standard Young tableaux, J. Comb. Theory, Ser. A, Vol. 76 , No. 1 (1996), pp. 175-177.
- Daniel W. Stasiuk, An Enumeration Problem for Sequences of n-ary Trees Arising from Algebraic Operads, Master's Thesis, University of Saskatchewan-Saskatoon (2018).
- A. Vogt, Resummation of small-x double logarithms in QCD: semi-inclusive electron-positron annihilation, arXiv:1108.2993 [hep-ph], 2011.
- N. J. Wildberger and Dean Rubine, A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode, Amer. Math. Monthly (2025). See section 12.
Counts terms of
A031445 with 2n+2 digits in binary.
Cf.
A000097,
A000346,
A000984,
A001622,
A001700,
A007318,
A008549,
A031444,
A058622,
A097805,
A116406,
A138364,
A163493,
A202736.
-
List([1..25],n->Binomial(2*n+1,n-1)); # Muniru A Asiru, Aug 09 2018
-
[Binomial(2*n+1, n-1): n in [1..30]]; // Vincenzo Librandi, Apr 20 2015
-
with(combstruct): seq((count(Composition(2*n+2), size=n)), n=1..24); # Zerinvary Lajos, May 03 2007
-
CoefficientList[Series[8/(((Sqrt[1-4x] +1)^3)*Sqrt[1-4x]), {x,0,22}], x] (* Robert G. Wilson v, Aug 08 2011 *)
a[ n_]:= Binomial[2 n + 1, n - 1]; (* Michael Somos, Apr 25 2014 *)
-
{a(n) = binomial( 2*n+1, n-1)};
-
from _future_ import division
A002054_list, b = [], 1
for n in range(1,10**3):
A002054_list.append(b)
b = b*(2*n+2)*(2*n+3)//(n*(n+3)) # Chai Wah Wu, Jan 26 2016
-
[binomial(2*n+1, n-1) for n in (1..25)] # G. C. Greubel, Mar 22 2019
A027306
a(n) = 2^(n-1) + ((1 + (-1)^n)/4)*binomial(n, n/2).
Original entry on oeis.org
1, 1, 3, 4, 11, 16, 42, 64, 163, 256, 638, 1024, 2510, 4096, 9908, 16384, 39203, 65536, 155382, 262144, 616666, 1048576, 2449868, 4194304, 9740686, 16777216, 38754732, 67108864, 154276028, 268435456, 614429672, 1073741824, 2448023843
Offset: 0
From _Gus Wiseman_, Aug 20 2021: (Start)
The a(0) = 1 through a(4) = 11 binary numbers with a majority of 1-bits (Gottfried's comment) are:
1 11 101 1011 10011
110 1101 10101
111 1110 10110
1111 10111
11001
11010
11011
11100
11101
11110
11111
The version allowing an initial zero is A058622.
(End)
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.6)
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- F. Disanto, A. Frosini, and S. Rinaldi, Square involutions, J. Int. Seq. 14 (2011) # 11.3.5.
- Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
a(n) = Sum{(k+1)T(n, m-k)}, 0<=k<=[ (n+1)/2 ], T given by
A008315.
The odd bisection appears to be
A032443.
-
List([0..35],n->Sum([0..Int(n/2)],k->Binomial(n,k))); # Muniru A Asiru, Nov 27 2018
-
a027306 n = a008949 n (n `div` 2) -- Reinhard Zumkeller, Nov 14 2014
-
[2^(n-1)+(1+(-1)^n)/4*Binomial(n, n div 2): n in [0..40]]; // Vincenzo Librandi, Jun 19 2016
-
a:= proc(n) add(binomial(n, j), j=0..n/2) end:
seq(a(n), n=0..32); # Zerinvary Lajos, Mar 29 2009
-
Table[Sum[Binomial[n, k], {k, 0, Floor[n/2]}], {n, 1, 35}]
(* Second program: *)
a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = (2(n-1)(2a[n-2] + a[n-1]) - 8(n-2) a[n-3])/n; Array[a, 33, 0] (* Jean-François Alcover, Sep 04 2016 *)
-
a(n)=if(n<0,0,(2^n+if(n%2,0,binomial(n, n/2)))/2)
Better description from
Robert G. Wilson v, Aug 30 2000 and from Yong Kong (ykong(AT)curagen.com), Dec 28 2000
A008549
Number of ways of choosing at most n-1 items from a set of size 2*n+1.
Original entry on oeis.org
0, 1, 6, 29, 130, 562, 2380, 9949, 41226, 169766, 695860, 2842226, 11576916, 47050564, 190876696, 773201629, 3128164186, 12642301534, 51046844836, 205954642534, 830382690556, 3345997029244, 13475470680616, 54244942336114, 218269673491780, 877940640368572
Offset: 0
a(2) = 6 because there are 6 ways to choose at most 1 item from a set of size 5: You can choose the empty set, or you can choose any of the five one-element sets.
G.f. = x + 6*x^2 + 29*x^3 + 130*x^4 + 562*x^5 + 2380*x^6 + 9949*x^7 + ...
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- Indranil Ghosh, Table of n, a(n) for n = 0..1500 (terms 0..200 from T. D. Noe)
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, 18 (2015), Article 15.5.1.
- Octavio Arizmendi, Daniel Perales, and Josue Vazquez-Becerra, Finite Free Convolution: Infinitesimal Distributions, arXiv:c [math.PR], 2025. See p. 34.
- Jean Christophe Aval, Adrien Boussicault, Patxi Laborde-Zubieta, and Mathias Pétréolle, Generating series of Periodic Parallelogram polyominoes, arXiv:1612.03759, 2016.
- Roland Bacher, On generating series of complementary plane trees, arXiv:math/0409050 [math.CO], 2004.
- Vijay Balasubramanian, Javier M. Magan, and Qingyue Wu, A Tale of Two Hungarians: Tridiagonalizing Random Matrices, arXiv:2208.08452 [hep-th], 2022.
- Cyril Banderier, Analytic combinatorics of random walks and planar maps, Ph. D. Thesis, 2001. [Broken link]
- Adrien Boussicault and P. Laborde-Zubieta, Periodic Parallelogram Polyominoes, arXiv preprint arXiv:1611.03766 [math.CO], 2016.
- AJ Bu, Explicit Generating Functions for the Sum of the Areas Under Dyck and Motzkin Paths (and for Their Powers), arXiv:2310.17026 [math.CO], 2023.
- AJ Bu and Doron Zeilberger, Using Symbolic Computation to Explore Generalized Dyck Paths and Their Areas, arXiv:2305.09030 [math.CO], 2023.
- Alexander Burstein and Sergi Elizalde, Total occurrence statistics on restricted permutations, arXiv:1305.3177 [math.CO], 2013.
- Robin Chapman, Moments of Dyck paths, Discrete Math., 204 (1999), 113-117.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO], 2023.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Niklas G. Johansson, Efficient Simulation of the Deutsch-Jozsa Algorithm, Master's Project, Department of Electrical Engineering & Department of Physics, Chemistry and Biology, Linkoping University, April, 2015.
- Miles Jones, Sergey Kitaev, and Jeffrey Remmel, Frame patterns in n-cycles, arXiv preprint arXiv:1311.3332 [math.CO], 2013.
- James A. Mingo and Josue Vazquez-Becerra, The Asymptotic Infinitesimal Distribution of a Real Wishart Random Matrix, arXiv:2112.15231 [math.PR], 2021.
- Henri Mühle, Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices, arXiv:1509.06942v1 [math.CO], 2015.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Elisa Pergola, Two bijections for the area of Dyck paths, Discrete Math., 241 (2001), 435-447.
- Wen-jin Woan, Area of Catalan Paths, Discrete Math., 226 (2001), 439-444.
For integer compositions of 2*(n+1) with alternating sum k < 0 we have:
- The opposite (k > 0) version is
A000302.
- The weak (k <= 0) version is (also)
A000302.
- The reverse-alternating version is also
A008549 (this sequence).
- The complement (k >= 0) is counted by
A114121.
- The case of reversed integer partitions is
A344743(n+1).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A001791,
A007318,
A025047,
A027306,
A032443,
A058622,
A120452,
A163493,
A239830,
A344611.
-
[4^n-Binomial(2*n+1, n): n in [0..30]]; // Vincenzo Librandi, Feb 04 2016
-
A008549:=n->4^n-binomial(2*n+1,n): seq(A008549(n), n=0..30);
-
Table[4^n-Binomial[2n+1,n],{n,0,30}] (* Harvey P. Dale, May 11 2011 *)
a[ n_] := If[ n<-4, 0, 4^n - Binomial[2 n + 2, n + 1] / 2] (* Michael Somos, Jan 25 2014 *)
-
{a(n)=if(n<0, 0, 4^n - binomial(2*n+1, n))} /* Michael Somos Oct 31 2006 */
-
{a(n) = if( n<-4, 0, n++; (4^n / 2 - binomial(2*n, n)) / 2)} /* Michael Somos, Jan 25 2014 */
-
import math
def C(n,r):
f=math.factorial
return f(n)/f(r)/f(n-r)
def A008549(n):
return int((4**n)-C(2*n+1,n)) # Indranil Ghosh, Feb 18 2017
Better description from Dan Velleman (djvelleman(AT)amherst.edu), Dec 01 2000
Comments