cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215919 a(n) = -3*a(n-1) + a(n-3), with a(0)=0, a(1)=-3, a(2)=12.

Original entry on oeis.org

0, -3, 12, -36, 105, -303, 873, -2514, 7239, -20844, 60018, -172815, 497601, -1432785, 4125540, -11879019, 34204272, -98487276, 283582809, -816544155, 2351145189, -6769852758, 19493014119, -56127897168, 161613838746, -465348502119, 1339917609189, -3858138988821
Offset: 0

Views

Author

Roman Witula, Aug 27 2012

Keywords

Comments

The Berndt-type sequence number 10 for the argument 2Pi/9 defined by the first trigonometric relation from the section "Formula" below. The sequence a(n) is connected with sequences A215917 and A215885 - see the respective formula.
We have A035045(n)=abs(a(n+1)/3) for every n=0,1,...,5 and A035045(7) + a(7)/3 = 1, A035045(8) - a(8)/3 = 10, A035045(9) + a(9)/3 = 63, and A035045(10) - a(10)/3 = 320 - all these four results-numbers are in A069269.

Examples

			We have a(2)=-4*a(1), a(3)=-3*a(2), a(6)/a(3) = -24.25, and a(9) = 579*a(3).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-3, 0, 1}, {0, -3, 12}, 50]

Formula

a(n) = c(1)*(-c(2))^(-n) + c(2)*(-c(4))^(-n) + c(4)*(-c(1))^(-n), where c(j) := 2*cos(2*Pi*j/9).
a(n) = A215917(n+1) + A215917(n) - 2*(-1)^n*A215885(n).
G.f.: -3*x*(1-x)/(1+3*x-x^3).

A115990 Riordan array (1/sqrt(1-2*x-3*x^2), (1-2*x-3*x^2)/(2*(1-3*x)) - sqrt(1-2*x-3*x^2)/2).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 5, 3, 1, 19, 13, 8, 4, 1, 51, 35, 22, 12, 5, 1, 141, 96, 61, 35, 17, 6, 1, 393, 267, 171, 101, 53, 23, 7, 1, 1107, 750, 483, 291, 160, 77, 30, 8, 1, 3139, 2123, 1373, 839, 476, 244, 108, 38, 9, 1, 8953, 6046, 3923, 2423, 1406, 752, 360, 147, 47, 10
Offset: 0

Views

Author

Paul Barry, Feb 10 2006

Keywords

Comments

First column is central trinomial coefficients A002426. Second column is number of directed animals of size n+1, A005773(n+1). Row sums are A005717 (number of horizontal steps in all Motzkin paths of length n). First column has e.g.f. exp(x) I_0(2x). Row sums have e.g.f. dif(exp(x) I_1(2x),x).
Riordan array (1/sqrt(1-2*x-3*x^2), (1+x-sqrt(1-2*x-3*x^2))/2).

Examples

			Triangle begins
    1;
    1,  1;
    3,  2,  1;
    7,  5,  3,  1;
   19, 13,  8,  4,  1;
   51, 35, 22, 12,  5,  1;
  141, 96, 61, 35, 17,  6,  1;
		

Crossrefs

Cf. A115991, A005773 (k=1), A025566 (k=2), A035045 (k=3), A152948 (diag. n=k+2), .

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-j)) ))); # G. C. Greubel, May 09 2019
  • Magma
    [[(&+[Binomial(n-k, j-k)*Binomial(j, n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
    
  • Maple
    A115990 := proc(n,k)
        add(binomial(n-k,j-k)*binomial(j,n-j),j=0..n) ;
    end proc:
    seq(seq(A115990(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jun 25 2023
  • Mathematica
    Table[Sum[ Binomial[n-k, j-k]*Binomial[j, n-j], {j, 0, n}], {n, 0, 10}, {k, 0, n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)
  • PARI
    {T(n, k) = sum(j=0, n, binomial(n-k, j-k)*binomial(j, n-j))}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [[sum(binomial(n-k, j-k)*binomial(j, n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
    

Formula

Number triangle T(n,k) = Sum_{j=0..n} C(n-k,j-k)*C(j,n-j).
Showing 1-2 of 2 results.