cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 421 results. Next

A045720 3-fold convolution of A001700(n), n >= 0.

Original entry on oeis.org

1, 9, 57, 312, 1578, 7599, 35401, 161052, 719790, 3173090, 13836426, 59803104, 256596276, 1094249019, 4642178601, 19605872724, 82483419846, 345839048094, 1445715336366, 6027524015664, 25070662980876, 104056307673654
Offset: 0

Views

Author

Keywords

Comments

Total number of 132 (or 213) patterns in the set of all 123-avoiding permutations of length (n+3). - Cheyne Homberger, Mar 16 2012
a(n) is the degree of the cyclic graphical Gaussian model for the (n+3) cycle. - Mateusz Michalek, Mar 04 2023

References

  • B. Sturmfels, and C. Uhler. Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry. Annals of the Institute of Statistical Mathematics 62.4 (2010): 603-638, Conjecture 2 proved in "Geometry of the Gaussian graphical model of the cycle"

Crossrefs

Programs

  • Mathematica
    Table[(n+5)*Binomial[2*(n+3),n+3]/4-3*2^(2n+3),{n,0,21}] (* Indranil Ghosh, Feb 18 2017 *)
  • PARI
    x='x+O('x^30); Vec((((1-4*x)^(-1/2)-1)/(2*x))^3) \\ Altug Alkan, Sep 04 2018
  • Python
    import math
    def C(n,r):
        f=math.factorial
        return f(n)/f(r)/f(n-r)
    def A045720(n):
        return (n+5)*C(2*(n+3),n+3)/4-3*2**(2*n+3) # Indranil Ghosh, Feb 18 2017
    

Formula

a(n) = (n+5)*binomial(2*(n+3), n+3)/4 - 3*2^(2*n+3);
G.f.: (c(x)/sqrt(1-4*x))^3, where c(x) = g.f. for Catalan numbers A000108;
recursion: a(n)=(2*(2*n+7)/(n+3))*a(n-1)+(3/(n+3))*A008549(n+1), a(0)=1.

A045894 4-fold convolution of A001700(n), n >= 0.

Original entry on oeis.org

1, 12, 94, 608, 3525, 19044, 97954, 486000, 2345930, 11081880, 51447036, 235454848, 1064832173, 4767347796, 21160397050, 93223960784, 408037319262, 1775744775592, 7688699122724, 33140226601920, 142262721338146
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n + 11)*4^(n + 2) - (n + 5) Binomial[2 (n + 4), n + 4]/2, {n, 0, 20}] (* Michael De Vlieger, Feb 18 2017 *)
  • Python
    import math
    def C(n,r):
        f=math.factorial
        return f(n)/f(r)/f(n-r)
    def A045894(n):
        return (n+11)*4**(n+2)-(n+5)*C(2*(n+4),(n+4))/2 # Indranil Ghosh, Feb 18 2017

Formula

a(n) = (n+11)*4^(n+2) - (n+5)*binomial(2*(n+4), n+4)/2;
G.f.: c(x)^4/(1-4*x)^2, where c(x) = g.f. for Catalan numbers A000108;
recursion: a(n)= (2*(2*n+10)/(n+4))*a(n-1) + (4/(n+4))*A045720(n), a(0)=1.

A100033 Bisection of A001700.

Original entry on oeis.org

3, 35, 462, 6435, 92378, 1352078, 20058300, 300540195, 4537567650, 68923264410, 1052049481860, 16123801841550, 247959266474052, 3824345300380220, 59132290782430712, 916312070471295267, 14226520737620288370
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Crossrefs

Programs

  • Maple
    a:=n->binomial(4*n+3,2*n+2): seq(a(n),n=0..19);

Formula

a(n) = binomial(4*n+3, 2*n+2). - Emeric Deutsch, Dec 09 2004
From Peter Bala, Mar 19 2023: (Start)
a(n) = (1/2)*Sum_{k = 0..2*n+2} binomial(2*n+2,k)^2.
a(n) = (1/2)*hypergeom([-2 - 2*n, -2 - 2*n], [1], 1).
a(n) = 2*(4*n + 1)*(4*n + 3)/((n + 1)*(2*n + 1)) * a(n-1). (End)
From Peter Bala, Mar 28 2023: (Start)
a(n) = (1/(2*n + 2))*Sum_{k = 0..2*n+2} k*binomial(2*n+2,k)^2.
a(n) = 2*(n + 1)*hypergeom([-1 - 2*n, -1 - 2*n], [2], 1). (End)

Extensions

More terms from Emeric Deutsch, Dec 09 2004

A205945 Triangle read by rows related to A001700.

Original entry on oeis.org

1, 1, 2, 1, 7, 2, 1, 20, 12, 2, 1, 54, 53, 16, 2, 1, 143, 208, 88, 20, 2, 1, 376, 768, 415, 130, 24, 2, 1, 986, 2734, 1804, 700, 180, 28, 2
Offset: 1

Views

Author

Gary W. Adamson, Feb 01 2012

Keywords

Comments

Row sums = A001700: (1, 3, 10, 35, 126, 462, ...).

Examples

			First few rows of the triangle =
1;
1, 2;
1, 7, 2;
1, 20, 12, 2;
1, 54, 53, 16, 2;
1, 143, 208, 88, 20, 2;
1, 376, 768, 415, 130, 24, 2;
1, 986, 2734, 1804, 700, 180, 28, 2;
...
Row 3 = (1, 7, 2) = row 5 of triangle A191314; and finite differences of column 5 of triangle A205573: (1, 8, 10, ...).
		

Crossrefs

Formula

Bisection of triangle A191314 extracting odd numbered rows. Accessing odd numbered columns of A205573, take finite differences of terms from the top -> down.

A246432 Convolution inverse of A001700.

Original entry on oeis.org

1, -3, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452
Offset: 0

Views

Author

Michael Somos, Nov 14 2014

Keywords

Examples

			G.f. = 1 - 3*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 - 42*x^6 - 132*x^7 - 429*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 +Sqrt(1-4*x))/2 -2*x)); // G. C. Greubel, Aug 04 2018
  • Mathematica
    CoefficientList[Series[(1 +Sqrt[1-4*x])/2 -2*x, {x, 0, 50}], x] (* G. C. Greubel, Aug 04 2018 *)
  • PARI
    {a(n) = if( n<2, (n==0) - 3*(n==1), - binomial(2*n - 2, n-1) / n)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + sqrt(1 - 4*x + x * O(x^n))) / 2 - 2*x, n))};
    

Formula

G.f.: (1 + sqrt(1 - 4*x)) / 2 - 2*x.
G.f.: -2*x + 1 - x / (1 - x / (1 - x / ...)) (continued fraction).
a(n) = A115140(n) = A115141(n) for all n in Z unless n=1.
a(n) = -A000108(n-1) for all n>1.

A035330 5-fold convolution of A001700(n), n >= 0.

Original entry on oeis.org

1, 15, 140, 1045, 6835, 40963, 230720, 1240740, 6437890, 32468470, 160010280, 773624615, 3680728375, 17274086235, 80119845080, 367821324040, 1673528845710, 7554110698850, 33858536700040, 150802994850570
Offset: 0

Views

Author

Keywords

Comments

Fifth column of triangular array A035324.

Crossrefs

Programs

  • Mathematica
    Array[(#^2 + 27 # + 122) Binomial[2 (# + 5), # + 5]/24 - 5 (# + 8)*2^(2 # + 5) &, 20, 0] (* Michael De Vlieger, Sep 04 2018 *)

Formula

a(n) = (n^2+27*n+122)*binomial(2*(n+5), n+5)/24 - 5*(n+8)*2^(2*n+5) = A035324(n+5, 5);
G.f.: c(x)^5/(1-4*x)^(5/2), where c(x) = g.f. for Catalan numbers A000108.

A046658 Triangle related to A001700 and A000302 (powers of 4).

Original entry on oeis.org

1, 3, 1, 10, 7, 1, 35, 38, 11, 1, 126, 187, 82, 15, 1, 462, 874, 515, 142, 19, 1, 1716, 3958, 2934, 1083, 218, 23, 1, 6435, 17548, 15694, 7266, 1955, 310, 27, 1, 24310, 76627, 80324, 44758, 15086, 3195, 418, 31, 1, 92378, 330818, 397923, 259356, 105102, 27866, 4867, 542, 35, 1
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins as:
      1;
      3,     1;
     10,     7,     1;
     35,    38,    11,     1;
    126,   187,    82,    15,     1;
    462,   874,   515,   142,    19,    1;
   1716,  3958,  2934,  1083,   218,   23,   1;
   6435, 17548, 15694,  7266,  1955,  310,  27,  1;
  24310, 76627, 80324, 44758, 15086, 3195, 418, 31, 1;
		

Crossrefs

Column sequences for m=1..6: A001700, A000531, A029887, A045724, A045492, A045530.
Row sums: A046885.
Cf. A000302.

Programs

  • Magma
    A046658:= func< n,k | Binomial(n,k)*(Binomial(n+1,2)*Catalan(n )/Catalan(k-1) -4^(n-k+1)*Binomial(k,2))/(n*(n-k+1)) >;
    [A046658(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    T[n_, k_]:= (1/2)*Binomial[n,k-1]*(Binomial[2*n,n]/Binomial[2*(k-1), k -1] - 4^(n-k+1)*(k-1)/n);
    Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 28 2024 *)
  • SageMath
    def A046658(n,k): return (1/2)*binomial(n,k-1)*(binomial(2*n, n)/binomial(2*(k-1), k-1) - 4^(n-k+1)*(k-1)/n)
    flatten([[A046658(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 28 2024

Formula

T(n, k) = (1/2)*binomial(n, k-1)*( binomial(2*n, n)/binomial(2*(k-1), k-1) - 4^(n-k+1)*(k-1)/n ), n >= k >= 1.
G.f. for column k: x*c(x)*((x/(1-4*x))^(k-1))/sqrt(1-4*x), where c(x) is the g.f. for Catalan numbers (A000108).

A158109 G.f.: A(x) = exp(Sum_{n>=1} C(2n-1,n)*L(n)*x^n/n) such that Sum_{n>=1} L(n)*x^n/n = log(1+x*A(x)) where L(n) = A158259(n) and C(2n-1,n) = A001700(n-1).

Original entry on oeis.org

1, 1, 2, 15, 479, 58981, 27087299, 46407723445, 298505825690021, 7255847001783419768, 670260315103084510835973, 236409648316126537191063108559, 319643614642063671478190549232176669
Offset: 0

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 15*x^3 + 479*x^4 + 58981*x^5 +...
log(1+x*A(x)) = x + 1*x^2/2 + 4*x^3/3 + 53*x^4/4 + 2321*x^5/5 +...
log(A(x)) = x + 3*x^2/2 + 40*x^3/3 + 1855*x^4/4 + 292446*x^5/5 +...
log(A(x)) = x + 3*1*x^2/2 + 10*4*x^3/3 + 35*53*x^4/4 + 126*2321*x^5/5 +...
		

Crossrefs

Cf. A158259, A158257 (variant), A001700.

Programs

  • PARI
    {a(n)=local(A=1+x);if(n==0,1,for(i=1,n,A=exp(sum(m=1,n,binomial(2*m-1,m)*x^m*polcoeff(log(1+x*A+x*O(x^m)),m))+x*O(x^n)));polcoeff(A,n))}

A158259 L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*exp(Sum_{n>=1} C(2n-1,n)*a(n)*x^n/n) where C(2n-1,n) = A001700(n-1).

Original entry on oeis.org

1, 1, 4, 53, 2321, 351010, 189198136, 371045084781, 2686134761118382, 72555484959298332681, 7372783651816395650943931, 2836907736669733620359204710274, 4155363917021399525198623243750199333
Offset: 0

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Examples

			L.g.f.: A(x) = x + 1*x^2/2 + 4*x^3/3 + 53*x^4/4 + 2321*x^5/5 +...
exp(A(x)) = 1 + x + 2*x^2 + 15*x^3 + 479*x^4 + 58981*x^5 +...
exp(A(x)) = 1 + x*G(x) where G(x) is the g.f. of A158109 such that:
log(G(x)) = x + 3*1*x^2/2 + 10*4*x^3/3 + 35*53*x^4/4 + 126*2321*x^5/5 +...
		

Crossrefs

Cf. A158109, A158258 (variant), A001700.

Programs

  • PARI
    {a(n)=local(A=x+x^2);if(n==0,1,for(i=1,n-1,A=log(1+x*exp(sum(m=1,n,binomial(2*m-1,m)*x^m*polcoeff(A+x*O(x^m),m) )+x*O(x^n))));n*polcoeff(A,n))}

Formula

L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*G(x) where G(x) = g.f. of A158109.
exp(Sum_{n>=1} a(n)*x^n/n) = [1 + Sum_{n>=1} C(2n-1,n)*a(n)*x^n]/[1 + Sum_{n>=1} (C(2n-1,n)-1)*a(n)*x^n].

A187366 One half of a trisection of A001700: binomial(6n+5,3(n+1))/2, n>=0.

Original entry on oeis.org

5, 231, 12155, 676039, 38779380, 2268783825, 134564468610, 8061900920775, 486734856412028, 29566145391215356, 1804857108504066435, 110628135069209194801, 6804253717299758003900, 419727621552972772561830, 25956855321888352842417780
Offset: 0

Views

Author

Wolfdieter Lang, Mar 10 2011

Keywords

Comments

For trisection of a sequence see a comment and a reference under A187357.

Crossrefs

Cf. A187364 binomial(2(3n)+1,3n+1),
A187365 binomial(2(3n+1)+1,(3n+1)+1)/3.

Formula

a(n)= binomial(2*(3*n+2)+1,(3*n+2)+1)/2 = binomial(6*n+5,3*(n+1))/2 , n>=0.
O.g.f.: (cb(x^(1/3)) - 3 + sqrt(2)*P(x^(1/3))*sqrt(1/P(x^(1/3)) + 1 + 2*x^(1/3)))/(12*x),
with cb(x):=1/sqrt(1-4*x) (o.g.f. of A000984) and P(x):=P(-1/2,4*x)=1/sqrt(1+4*x+16*x^2) (o.g.f. of A116091, with P(x,z)the o.g.f. of the Legendre polynomials).
Showing 1-10 of 421 results. Next