A045720
3-fold convolution of A001700(n), n >= 0.
Original entry on oeis.org
1, 9, 57, 312, 1578, 7599, 35401, 161052, 719790, 3173090, 13836426, 59803104, 256596276, 1094249019, 4642178601, 19605872724, 82483419846, 345839048094, 1445715336366, 6027524015664, 25070662980876, 104056307673654
Offset: 0
- B. Sturmfels, and C. Uhler. Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry. Annals of the Institute of Statistical Mathematics 62.4 (2010): 603-638, Conjecture 2 proved in "Geometry of the Gaussian graphical model of the cycle"
- Indranil Ghosh, Table of n, a(n) for n = 0..1500
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
- A. Ayyer, Towards a Human Proof of Gessel's Conjecture, JIS 12 (2009) 09.4.2
- R. Dinu, M. Michalek, and M. Vodička. Geometry of the Gaussian graphical model of the cycle, arXiv preprint arXiv:2111.02937 [math.AG] (2021).
- C. Homberger, Expected patterns in permutation classes, Electronic Journal of Combinatorics, 19(3) (2012), P43.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- D. R. Snow, Spreadsheets, Power Series, Generating Functions and Integers, The College Maths. J. 20 (1989) 149.
-
Table[(n+5)*Binomial[2*(n+3),n+3]/4-3*2^(2n+3),{n,0,21}] (* Indranil Ghosh, Feb 18 2017 *)
-
x='x+O('x^30); Vec((((1-4*x)^(-1/2)-1)/(2*x))^3) \\ Altug Alkan, Sep 04 2018
-
import math
def C(n,r):
f=math.factorial
return f(n)/f(r)/f(n-r)
def A045720(n):
return (n+5)*C(2*(n+3),n+3)/4-3*2**(2*n+3) # Indranil Ghosh, Feb 18 2017
A045894
4-fold convolution of A001700(n), n >= 0.
Original entry on oeis.org
1, 12, 94, 608, 3525, 19044, 97954, 486000, 2345930, 11081880, 51447036, 235454848, 1064832173, 4767347796, 21160397050, 93223960784, 408037319262, 1775744775592, 7688699122724, 33140226601920, 142262721338146
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..1500
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
-
Table[(n + 11)*4^(n + 2) - (n + 5) Binomial[2 (n + 4), n + 4]/2, {n, 0, 20}] (* Michael De Vlieger, Feb 18 2017 *)
-
import math
def C(n,r):
f=math.factorial
return f(n)/f(r)/f(n-r)
def A045894(n):
return (n+11)*4**(n+2)-(n+5)*C(2*(n+4),(n+4))/2 # Indranil Ghosh, Feb 18 2017
Original entry on oeis.org
3, 35, 462, 6435, 92378, 1352078, 20058300, 300540195, 4537567650, 68923264410, 1052049481860, 16123801841550, 247959266474052, 3824345300380220, 59132290782430712, 916312070471295267, 14226520737620288370
Offset: 0
A205945
Triangle read by rows related to A001700.
Original entry on oeis.org
1, 1, 2, 1, 7, 2, 1, 20, 12, 2, 1, 54, 53, 16, 2, 1, 143, 208, 88, 20, 2, 1, 376, 768, 415, 130, 24, 2, 1, 986, 2734, 1804, 700, 180, 28, 2
Offset: 1
First few rows of the triangle =
1;
1, 2;
1, 7, 2;
1, 20, 12, 2;
1, 54, 53, 16, 2;
1, 143, 208, 88, 20, 2;
1, 376, 768, 415, 130, 24, 2;
1, 986, 2734, 1804, 700, 180, 28, 2;
...
Row 3 = (1, 7, 2) = row 5 of triangle A191314; and finite differences of column 5 of triangle A205573: (1, 8, 10, ...).
Original entry on oeis.org
1, -3, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452
Offset: 0
G.f. = 1 - 3*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 - 42*x^6 - 132*x^7 - 429*x^8 + ...
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 +Sqrt(1-4*x))/2 -2*x)); // G. C. Greubel, Aug 04 2018
-
CoefficientList[Series[(1 +Sqrt[1-4*x])/2 -2*x, {x, 0, 50}], x] (* G. C. Greubel, Aug 04 2018 *)
-
{a(n) = if( n<2, (n==0) - 3*(n==1), - binomial(2*n - 2, n-1) / n)};
-
{a(n) = if( n<0, 0, polcoeff( (1 + sqrt(1 - 4*x + x * O(x^n))) / 2 - 2*x, n))};
A035330
5-fold convolution of A001700(n), n >= 0.
Original entry on oeis.org
1, 15, 140, 1045, 6835, 40963, 230720, 1240740, 6437890, 32468470, 160010280, 773624615, 3680728375, 17274086235, 80119845080, 367821324040, 1673528845710, 7554110698850, 33858536700040, 150802994850570
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1650
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
-
Array[(#^2 + 27 # + 122) Binomial[2 (# + 5), # + 5]/24 - 5 (# + 8)*2^(2 # + 5) &, 20, 0] (* Michael De Vlieger, Sep 04 2018 *)
Original entry on oeis.org
1, 3, 1, 10, 7, 1, 35, 38, 11, 1, 126, 187, 82, 15, 1, 462, 874, 515, 142, 19, 1, 1716, 3958, 2934, 1083, 218, 23, 1, 6435, 17548, 15694, 7266, 1955, 310, 27, 1, 24310, 76627, 80324, 44758, 15086, 3195, 418, 31, 1, 92378, 330818, 397923, 259356, 105102, 27866, 4867, 542, 35, 1
Offset: 1
Triangle begins as:
1;
3, 1;
10, 7, 1;
35, 38, 11, 1;
126, 187, 82, 15, 1;
462, 874, 515, 142, 19, 1;
1716, 3958, 2934, 1083, 218, 23, 1;
6435, 17548, 15694, 7266, 1955, 310, 27, 1;
24310, 76627, 80324, 44758, 15086, 3195, 418, 31, 1;
-
A046658:= func< n,k | Binomial(n,k)*(Binomial(n+1,2)*Catalan(n )/Catalan(k-1) -4^(n-k+1)*Binomial(k,2))/(n*(n-k+1)) >;
[A046658(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 28 2024
-
T[n_, k_]:= (1/2)*Binomial[n,k-1]*(Binomial[2*n,n]/Binomial[2*(k-1), k -1] - 4^(n-k+1)*(k-1)/n);
Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 28 2024 *)
-
def A046658(n,k): return (1/2)*binomial(n,k-1)*(binomial(2*n, n)/binomial(2*(k-1), k-1) - 4^(n-k+1)*(k-1)/n)
flatten([[A046658(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 28 2024
A158109
G.f.: A(x) = exp(Sum_{n>=1} C(2n-1,n)*L(n)*x^n/n) such that Sum_{n>=1} L(n)*x^n/n = log(1+x*A(x)) where L(n) = A158259(n) and C(2n-1,n) = A001700(n-1).
Original entry on oeis.org
1, 1, 2, 15, 479, 58981, 27087299, 46407723445, 298505825690021, 7255847001783419768, 670260315103084510835973, 236409648316126537191063108559, 319643614642063671478190549232176669
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 15*x^3 + 479*x^4 + 58981*x^5 +...
log(1+x*A(x)) = x + 1*x^2/2 + 4*x^3/3 + 53*x^4/4 + 2321*x^5/5 +...
log(A(x)) = x + 3*x^2/2 + 40*x^3/3 + 1855*x^4/4 + 292446*x^5/5 +...
log(A(x)) = x + 3*1*x^2/2 + 10*4*x^3/3 + 35*53*x^4/4 + 126*2321*x^5/5 +...
-
{a(n)=local(A=1+x);if(n==0,1,for(i=1,n,A=exp(sum(m=1,n,binomial(2*m-1,m)*x^m*polcoeff(log(1+x*A+x*O(x^m)),m))+x*O(x^n)));polcoeff(A,n))}
A158259
L.g.f.: exp(Sum_{n>=1} a(n)*x^n/n) = 1 + x*exp(Sum_{n>=1} C(2n-1,n)*a(n)*x^n/n) where C(2n-1,n) = A001700(n-1).
Original entry on oeis.org
1, 1, 4, 53, 2321, 351010, 189198136, 371045084781, 2686134761118382, 72555484959298332681, 7372783651816395650943931, 2836907736669733620359204710274, 4155363917021399525198623243750199333
Offset: 0
L.g.f.: A(x) = x + 1*x^2/2 + 4*x^3/3 + 53*x^4/4 + 2321*x^5/5 +...
exp(A(x)) = 1 + x + 2*x^2 + 15*x^3 + 479*x^4 + 58981*x^5 +...
exp(A(x)) = 1 + x*G(x) where G(x) is the g.f. of A158109 such that:
log(G(x)) = x + 3*1*x^2/2 + 10*4*x^3/3 + 35*53*x^4/4 + 126*2321*x^5/5 +...
-
{a(n)=local(A=x+x^2);if(n==0,1,for(i=1,n-1,A=log(1+x*exp(sum(m=1,n,binomial(2*m-1,m)*x^m*polcoeff(A+x*O(x^m),m) )+x*O(x^n))));n*polcoeff(A,n))}
A187366
One half of a trisection of A001700: binomial(6n+5,3(n+1))/2, n>=0.
Original entry on oeis.org
5, 231, 12155, 676039, 38779380, 2268783825, 134564468610, 8061900920775, 486734856412028, 29566145391215356, 1804857108504066435, 110628135069209194801, 6804253717299758003900, 419727621552972772561830, 25956855321888352842417780
Offset: 0
Cf.
A187364 binomial(2(3n)+1,3n+1),
A187365 binomial(2(3n+1)+1,(3n+1)+1)/3.
Showing 1-10 of 421 results.
Comments