cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A046885 Row sums of triangle A046658.

Original entry on oeis.org

1, 4, 18, 85, 411, 2013, 9933, 49236, 244750, 1218888, 6077644, 30329434, 151439158, 756452890, 3779590010, 18888255205, 94405918355, 471899946985, 2359022096225, 11793343217935, 58960151969255, 294776293579255
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else 5*Self(n-1) - Catalan(n-1): n in [1..40]]; // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    Rest@CoefficientList[Series[Sqrt[1-4*x]*(1-Sqrt[1-4*x])/(2*(1-5*x)), {x,0,40}], x] (* G. C. Greubel, Jul 28 2024 *)
  • SageMath
    @CachedFunction
    def A046885(n): return 1 if n==1 else 5*A046885(n-1) - catalan_number(n-1)
    [A046885(n) for n in range(1,41)] # G. C. Greubel, Jul 28 2024

Formula

a(n) = 2*5^(n-1) - A046714(n-1) = (A046748(n) - 5^(n-1))/2.
G.f.: x*(2 - c(x))/(1-5*x), where c(x) is the g.f. of A000108 (Catalan numbers).
Inhomogeneous recursion: a(n) = 5*a(n-1) - C(n-1), n >= 2, a(1)=1; C(n) = A000108(n) (Catalan).
Homogeneous recursion: a(n) = (3*(3*n-2)/n)*a(n-1) - (10*(2*n-3)/n)*a(n-2), n >= 3, a(1)=1, a(2)=4.
Showing 1-1 of 1 results.