cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A158495 Expansion of ((1-4*x) + sqrt(1-4*x))/(2*(1-2*x)).

Original entry on oeis.org

1, -1, -3, -8, -21, -56, -154, -440, -1309, -4048, -12958, -42712, -144210, -496432, -1735764, -6145968, -21986781, -79331232, -288307254, -1054253208, -3875769606, -14315659632, -53097586284, -197677736208, -738415086066
Offset: 0

Views

Author

Paul Barry, Mar 20 2009

Keywords

Comments

Hankel transform is A158496.

Crossrefs

Essentially the same as A014318, up to sign and offset.

Programs

  • Magma
    A158495:= func< n | n eq 0 select 1 else - (&+[2^(n-j)*Catalan(j-1): j in [1..n]]) >;
    [A158495(n): n in [0..40]]; // G. C. Greubel, Jan 09 2023
    
  • Mathematica
    CoefficientList[Series[((1-4x)+Sqrt[1-4x])/(2(1-2x)),{x,0,30}],x] (* Harvey P. Dale, Dec 15 2011 *)
  • SageMath
    def A158495(n): return int(n==0) - sum(2^(n-k)*catalan_number(k-1) for k in range(1,n+1))
    [A158495(n) for n in range(41)] # G. C. Greubel, Jan 09 2023

Formula

a(n) = (2*0^n - 2^n + A126966(n))/2.
Conjecture: n*a(n) +6*(-n+1)*a(n-1) +4*(2*n-3)*a(n-2)=0. - R. J. Mathar, Dec 03 2014
From G. C. Greubel, Jan 09 2023: (Start)
a(n) = [n=0] - Sum_{k=1..n} 2^(n-k)*A000108(k-1).
a(n) = Sum_{j=0..n} 2^(n-j)*A246432(j). (End)

A307489 G.f. A(x) satisfies: A(x) = 1/(1 - 2*x*A(x) - x*A(x)/(1 - x*A(x)/(1 - x*A(x)/(1 - ...)))), a continued fraction.

Original entry on oeis.org

1, 3, 19, 152, 1367, 13195, 133556, 1398696, 15029311, 164764985, 1835614027, 20722066612, 236524088612, 2725081792932, 31649837891768, 370161223462480, 4355751419996559, 51532214460643957, 612604251998847641, 7313900470316335280, 87659840436181657215
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 19*x^2 + 152*x^3 + 1367*x^4 + 13195*x^5 + 133556*x^6 + 1398696*x^7 + 15029311*x^8 + 164764985*x^9 + 1835614027*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 21; CoefficientList[1/x InverseSeries[Series[x (1 - 4 x + Sqrt[1 - 4 x])/2, {x, 0, terms}], x], x]
    terms = 21; A[] = 0; Do[A[x] = 1/(1 - 2 x A[x] + ContinuedFractionK[-x A[x], 1, {k, 1, j}]) + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 20; A[] = 1; Do[A[x] = 2/(1 - 4 x A[x] + Sqrt[1 - 4 x A[x]]) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
    terms = 21; A[] = 1; Do[A[x] = Sum[Binomial[2 k + 1, k + 1] x^k A[x]^k, {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 2/(1 - 4*x*A(x) + sqrt(1 - 4*x*A(x))).
G.f. A(x) satisfies: A(x) = Sum_{k>=0} binomial(2*k+1,k+1)*x^k*A(x)^k.
G.f.: A(x) = (1/x)*Series_Reversion(x*(1 - 4*x + sqrt(1 - 4*x))/2).
a(n) ~ 2^(12*n + 5) / (sqrt(Pi) * 17^(1/4) * n^(3/2) * (107 + 51*sqrt(17))^(n + 1/2)). - Vaclav Kotesovec, Sep 16 2021

A308850 Expansion of e.g.f. exp(-2*x) / (BesselI(0,2*x) + BesselI(1,2*x)).

Original entry on oeis.org

1, -3, 8, -17, 18, 58, -364, 369, 6194, -37382, -28848, 1717274, -8592644, -47472804, 918146560, -2911313551, -61122074382, 806675821162, 46813084592, -105331573943466, 1018198168087636, 6417696715221572, -247555432672498872, 1535509971584425358, 34028097257000628028, -764203552200012087252
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 28 2019

Keywords

Comments

E.g.f. is inverse of e.g.f. for A001700.

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[-2 x]/(BesselI[0, 2 x] + BesselI[1, 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] Binomial[2 k + 1, k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: 1 / Sum_{k>=0} binomial(2*k+1,k+1)*x^k/k!.
Showing 1-3 of 3 results.