Original entry on oeis.org
0, 0, 0, 1, 30, 705, 15960, 370125, 8998290, 231416325, 6314962500, 182894567625, 5615811951750, 182497749258825, 6264206330382000, 226636350724909125, 8624703350821808250, 344535241891693978125, 14419858385821910521500
Offset: 1
a(5)=30 increasing ternary 4-forest with n=5 vertices: there are three such 4-forests (three one vertex trees together with any of the three different 2-vertex trees) each with 10 increasing labelings. _Wolfdieter Lang_, Sep 14 2007.
A008549
Number of ways of choosing at most n-1 items from a set of size 2*n+1.
Original entry on oeis.org
0, 1, 6, 29, 130, 562, 2380, 9949, 41226, 169766, 695860, 2842226, 11576916, 47050564, 190876696, 773201629, 3128164186, 12642301534, 51046844836, 205954642534, 830382690556, 3345997029244, 13475470680616, 54244942336114, 218269673491780, 877940640368572
Offset: 0
a(2) = 6 because there are 6 ways to choose at most 1 item from a set of size 5: You can choose the empty set, or you can choose any of the five one-element sets.
G.f. = x + 6*x^2 + 29*x^3 + 130*x^4 + 562*x^5 + 2380*x^6 + 9949*x^7 + ...
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- Indranil Ghosh, Table of n, a(n) for n = 0..1500 (terms 0..200 from T. D. Noe)
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, 18 (2015), Article 15.5.1.
- Octavio Arizmendi, Daniel Perales, and Josue Vazquez-Becerra, Finite Free Convolution: Infinitesimal Distributions, arXiv:c [math.PR], 2025. See p. 34.
- Jean Christophe Aval, Adrien Boussicault, Patxi Laborde-Zubieta, and Mathias Pétréolle, Generating series of Periodic Parallelogram polyominoes, arXiv:1612.03759, 2016.
- Roland Bacher, On generating series of complementary plane trees, arXiv:math/0409050 [math.CO], 2004.
- Vijay Balasubramanian, Javier M. Magan, and Qingyue Wu, A Tale of Two Hungarians: Tridiagonalizing Random Matrices, arXiv:2208.08452 [hep-th], 2022.
- Cyril Banderier, Analytic combinatorics of random walks and planar maps, Ph. D. Thesis, 2001. [Broken link]
- Adrien Boussicault and P. Laborde-Zubieta, Periodic Parallelogram Polyominoes, arXiv preprint arXiv:1611.03766 [math.CO], 2016.
- AJ Bu, Explicit Generating Functions for the Sum of the Areas Under Dyck and Motzkin Paths (and for Their Powers), arXiv:2310.17026 [math.CO], 2023.
- AJ Bu and Doron Zeilberger, Using Symbolic Computation to Explore Generalized Dyck Paths and Their Areas, arXiv:2305.09030 [math.CO], 2023.
- Alexander Burstein and Sergi Elizalde, Total occurrence statistics on restricted permutations, arXiv:1305.3177 [math.CO], 2013.
- Robin Chapman, Moments of Dyck paths, Discrete Math., 204 (1999), 113-117.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO], 2023.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Niklas G. Johansson, Efficient Simulation of the Deutsch-Jozsa Algorithm, Master's Project, Department of Electrical Engineering & Department of Physics, Chemistry and Biology, Linkoping University, April, 2015.
- Miles Jones, Sergey Kitaev, and Jeffrey Remmel, Frame patterns in n-cycles, arXiv preprint arXiv:1311.3332 [math.CO], 2013.
- James A. Mingo and Josue Vazquez-Becerra, The Asymptotic Infinitesimal Distribution of a Real Wishart Random Matrix, arXiv:2112.15231 [math.PR], 2021.
- Henri Mühle, Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices, arXiv:1509.06942v1 [math.CO], 2015.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Elisa Pergola, Two bijections for the area of Dyck paths, Discrete Math., 241 (2001), 435-447.
- Wen-jin Woan, Area of Catalan Paths, Discrete Math., 226 (2001), 439-444.
For integer compositions of 2*(n+1) with alternating sum k < 0 we have:
- The opposite (k > 0) version is
A000302.
- The weak (k <= 0) version is (also)
A000302.
- The reverse-alternating version is also
A008549 (this sequence).
- The complement (k >= 0) is counted by
A114121.
- The case of reversed integer partitions is
A344743(n+1).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A001791,
A007318,
A025047,
A027306,
A032443,
A058622,
A120452,
A163493,
A239830,
A344611.
-
[4^n-Binomial(2*n+1, n): n in [0..30]]; // Vincenzo Librandi, Feb 04 2016
-
A008549:=n->4^n-binomial(2*n+1,n): seq(A008549(n), n=0..30);
-
Table[4^n-Binomial[2n+1,n],{n,0,30}] (* Harvey P. Dale, May 11 2011 *)
a[ n_] := If[ n<-4, 0, 4^n - Binomial[2 n + 2, n + 1] / 2] (* Michael Somos, Jan 25 2014 *)
-
{a(n)=if(n<0, 0, 4^n - binomial(2*n+1, n))} /* Michael Somos Oct 31 2006 */
-
{a(n) = if( n<-4, 0, n++; (4^n / 2 - binomial(2*n, n)) / 2)} /* Michael Somos, Jan 25 2014 */
-
import math
def C(n,r):
f=math.factorial
return f(n)/f(r)/f(n-r)
def A008549(n):
return int((4**n)-C(2*n+1,n)) # Indranil Ghosh, Feb 18 2017
Better description from Dan Velleman (djvelleman(AT)amherst.edu), Dec 01 2000
A035324
A convolution triangle of numbers, generalizing Pascal's triangle A007318.
Original entry on oeis.org
1, 3, 1, 10, 6, 1, 35, 29, 9, 1, 126, 130, 57, 12, 1, 462, 562, 312, 94, 15, 1, 1716, 2380, 1578, 608, 140, 18, 1, 6435, 9949, 7599, 3525, 1045, 195, 21, 1, 24310, 41226, 35401, 19044, 6835, 1650, 259, 24, 1, 92378, 169766, 161052, 97954, 40963, 12021, 2450
Offset: 1
Triangle begins:
1;
3, 1;
10, 6, 1;
35, 29, 9, 1;
126, 130, 57, 12, 1;
462, 562, 312, 94, 15, 1;
Triangle (0, 3, 1/3, 5/3, 3/5, ...) DELTA (1,0,0,0,0,0, ...) has an additional first column (1,0,0,...).
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First 10 rows.
Alternating row sums give
A000108 (Catalan numbers).
If offset 0 (n >= m >= 0): convolution triangle based on
A001700 (central binomial coeffs. of odd order).
-
a035324 n k = a035324_tabl !! (n-1) !! (k-1)
a035324_row n = a035324_tabl !! (n-1)
a035324_tabl = map snd $ iterate f (1, [1]) where
f (i, xs) = (i + 1, map (`div` (i + 1)) $
zipWith (+) ((map (* 2) $ zipWith (*) [2 * i + 1 ..] xs) ++ [0])
([0] ++ zipWith (*) [2 ..] xs))
-- Reinhard Zumkeller, Jun 30 2013
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = 2*(2*(n-1) + m)*(a[n-1, m]/n) + m*(a[n-1, m-1]/n); a[n_, m_] /; n < m = 0; a[n_, 0] = 0; a[1, 1] = 1; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 1, n}]] (* Jean-François Alcover, Feb 21 2012, from first formula *)
-
@cached_function
def T(n, k):
if n == 0: return n^k
return sum(binomial(2*i-1, i)*T(n-1, k-i) for i in (1..k-n+1))
A035324 = lambda n,k: T(k, n)
for n in (1..8): print([A035324(n, k) for k in (1..n)]) # Peter Luschny, Aug 16 2016
A035330
5-fold convolution of A001700(n), n >= 0.
Original entry on oeis.org
1, 15, 140, 1045, 6835, 40963, 230720, 1240740, 6437890, 32468470, 160010280, 773624615, 3680728375, 17274086235, 80119845080, 367821324040, 1673528845710, 7554110698850, 33858536700040, 150802994850570
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1650
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
-
Array[(#^2 + 27 # + 122) Binomial[2 (# + 5), # + 5]/24 - 5 (# + 8)*2^(2 # + 5) &, 20, 0] (* Michael De Vlieger, Sep 04 2018 *)
Showing 1-4 of 4 results.
Comments