cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A035119 Related to A045720 and A035101.

Original entry on oeis.org

0, 0, 1, 18, 285, 4680, 82845, 1595790, 33453945, 760970700, 18705542625, 494764058250, 14023390706325, 424278354099600, 13653335491921125, 465794724725079750, 16796514560465264625, 638448710154151396500
Offset: 1

Views

Author

Keywords

Comments

3rd column of triangular array A035342. a(n) = (2*n+1)*a(n-1) + A035101(n-1), n >= 3, a(2)=0.
a(n) gives the number of organically labeled forests (sets) with three rooted ordered trees with n non-root vertices. Organic labeling means that the vertex labels along the (unique) path from the root to any of the leaves (degree 1, non-root vertices) is increasing. W. Lang, Aug 07 2007.
a(n), n>=3, enumerates unordered n-vertex forests composed of three plane (ordered) ternary (3-ary) trees with increasing vertex labeling. See A001147 (number of increasing ternary trees) and a D. Callan comment there. For a picture of some ternary trees see a W. Lang link under A001764.

Examples

			a(4)=18 for the number of forests (sets) of three increasing labeled rooted trees with 4 non-root vertices and three root labels 0: [(0,4),{(0,1),(0,2)},(0,3)]; [(0,4),{(0,2),(0,1)},(0,3)]; [(0,4),{(0,1),(0,3)},(0,2)]; [(0,4),{(0,3),(0,1)},(0,2)]; [(0,4),{(0,2),(0,3)},(0,1)]; [(0,4),{(0,3),(0,2)},(0,1)]; [(0,4),(0,1,2),(0,3)]; [(0,4),(0,1,3),(0,2)]; [(0,4),(0,2,3),(0,1)]; [{(0,4),(0,1)},(0,2),(0,3)]; [{(0,1),(0,4)},(0,2),(0,3)]; [{(0,4),(0,2)},(0,1),(0,3)]; [{(0,2),(0,4)},(0,1),(0,3)]; [{(0,4),(0,3)},(0,1),(0,2)]; [{(0,3),(0,4)},(0,1),(0,2)]; [(0,1,4),(0,2),(0,3)]; [(0,2,4),(0,1),(0,3)]; [(0,3,4),(0,1),(0,2)].
a(4)=18 increasing ternary 3-forest with n=4 vertices: there are three 3-forests (two one vertex trees together with any of the three different 2-vertex trees) each with six increasing labelings. W. Lang, Sep 14 2007.
		

Crossrefs

Formula

a(n) = n!*((n+2)*binomial(2*n, n)/4-3*2^(2*n-3))/(3*2^(n-2)); a(n)= n!*A045720(n-3)/(3*2^(n-2)), n >= 3; E.g.f. (4/3)*(x*c(x/2)*(1-2*x)^(-1/2)/2)^3 = (2*x/3)*((1-x/2)*c(x/2)-1)/(1-2*x)^(3/2), where c(x) = g.f. for Catalan numbers A000108, a(0) := 0.

A035324 A convolution triangle of numbers, generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 35, 29, 9, 1, 126, 130, 57, 12, 1, 462, 562, 312, 94, 15, 1, 1716, 2380, 1578, 608, 140, 18, 1, 6435, 9949, 7599, 3525, 1045, 195, 21, 1, 24310, 41226, 35401, 19044, 6835, 1650, 259, 24, 1, 92378, 169766, 161052, 97954, 40963, 12021, 2450
Offset: 1

Views

Author

Keywords

Comments

Replacing each '2' in the recurrence by '1' produces Pascal's triangle A007318(n-1,m-1). The columns appear as A001700, A008549, A045720, A045894, A035330, ...
Triangle T(n,k), 1 <= k <= n, given by (0, 3/1, 1/3, 5/3, 3/5, 7/5, 5/7, 9/7, 7/9, 11/9, 9/11, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 28 2012
Riordan array (1, c(x)/sqrt(1-4x)) where c(x) = g.f. for Catalan numbers A000108, first column (k = 0) omitted. - Philippe Deléham, Jan 28 2012

Examples

			Triangle begins:
    1;
    3,   1;
   10,   6,   1;
   35,  29,   9,   1;
  126, 130,  57,  12,   1;
  462, 562, 312,  94,  15,   1;
Triangle (0, 3, 1/3, 5/3, 3/5, ...) DELTA (1,0,0,0,0,0, ...) has an additional first column (1,0,0,...).
		

Crossrefs

Row sums: A049027(n), n >= 1.
Alternating row sums give A000108 (Catalan numbers).
If offset 0 (n >= m >= 0): convolution triangle based on A001700 (central binomial coeffs. of odd order).

Programs

  • Haskell
    a035324 n k = a035324_tabl !! (n-1) !! (k-1)
    a035324_row n = a035324_tabl !! (n-1)
    a035324_tabl = map snd $ iterate f (1, [1]) where
       f (i, xs)  = (i + 1, map (`div` (i + 1)) $
          zipWith (+) ((map (* 2) $ zipWith (*) [2 * i + 1 ..] xs) ++ [0])
                      ([0] ++ zipWith (*) [2 ..] xs))
    -- Reinhard Zumkeller, Jun 30 2013
    
  • Mathematica
    a[n_, m_] /; n >= m >= 1 := a[n, m] = 2*(2*(n-1) + m)*(a[n-1, m]/n) + m*(a[n-1, m-1]/n); a[n_, m_] /; n < m = 0; a[n_, 0] = 0; a[1, 1] = 1; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 1, n}]] (* Jean-François Alcover, Feb 21 2012, from first formula *)
  • Sage
    @cached_function
    def T(n, k):
        if n == 0: return n^k
        return sum(binomial(2*i-1, i)*T(n-1, k-i) for i in (1..k-n+1))
    A035324 = lambda n,k: T(k, n)
    for n in (1..8): print([A035324(n, k) for k in (1..n)]) # Peter Luschny, Aug 16 2016

Formula

a(n+1, m) = 2*(2*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n
G.f. for column m: ((x*c(x)/sqrt(1-4*x))^m)/x, where c(x) = g.f. for Catalan numbers A000108.
a(n, m) =: s2(3; n, m).
With offset 0 (0 <= k <= n), T(n,k) = Sum_{j>=0} A039598(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007
T(n+1,n) = 3*n = A008585(n).
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + Sum_{i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012
T(n,m) = Sum_{k=m..n} k*binomial(k-1,k-m)*2^(k-m)*binomial(2*n-k-1,n-k)/n. - Vladimir Kruchinin, Aug 07 2013

A045894 4-fold convolution of A001700(n), n >= 0.

Original entry on oeis.org

1, 12, 94, 608, 3525, 19044, 97954, 486000, 2345930, 11081880, 51447036, 235454848, 1064832173, 4767347796, 21160397050, 93223960784, 408037319262, 1775744775592, 7688699122724, 33140226601920, 142262721338146
Offset: 0

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n + 11)*4^(n + 2) - (n + 5) Binomial[2 (n + 4), n + 4]/2, {n, 0, 20}] (* Michael De Vlieger, Feb 18 2017 *)
  • Python
    import math
    def C(n,r):
        f=math.factorial
        return f(n)/f(r)/f(n-r)
    def A045894(n):
        return (n+11)*4**(n+2)-(n+5)*C(2*(n+4),(n+4))/2 # Indranil Ghosh, Feb 18 2017

Formula

a(n) = (n+11)*4^(n+2) - (n+5)*binomial(2*(n+4), n+4)/2;
G.f.: c(x)^4/(1-4*x)^2, where c(x) = g.f. for Catalan numbers A000108;
recursion: a(n)= (2*(2*n+10)/(n+4))*a(n-1) + (4/(n+4))*A045720(n), a(0)=1.

A210064 Total number of 231 patterns in the set of permutations avoiding 123.

Original entry on oeis.org

0, 0, 1, 11, 81, 500, 2794, 14649, 73489, 356960, 1691790, 7864950, 36000186, 162697176, 727505972, 3223913365, 14176874193, 61926666824, 268931341414, 1161913686618, 4997204887550, 21404922261112, 91351116184716, 388581750349946, 1647982988377786
Offset: 1

Author

Cheyne Homberger, Mar 16 2012

Keywords

Comments

a(n) is the total number of 231 (and also 312) patterns in the set of all 123 avoiding n-permutations. Also the number of 231 (or 213, or 312) patterns in the set of all 132 avoiding n-permutations.

Examples

			a(3) = 1 since there is only one 231 pattern in the set {132,213,231,312,321}.
		

Crossrefs

Cf. A045720.

Programs

  • Mathematica
    Rest[CoefficientList[Series[x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 15 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x))) \\ G. C. Greubel, May 31 2017

Formula

G.f.: x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x).
a(n) ~ n * 2^(2*n-3) * (1 - 6/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 15 2014
Conjecture: n*(n-3)*a(n) +2*(-4*n^2+11*n-2)*a(n-1) +8*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 08 2016

A143019 Infinite square array read by antidiagonals: a(q,n) is the coefficient of z^n in the series expansion of C(z)^q/(1-4z)^(3/2), where C(z) = (1-sqrt(1-4z))/(2z) is the Catalan function (q,n = 0,1,2,...).

Original entry on oeis.org

1, 1, 6, 1, 7, 30, 1, 8, 38, 140, 1, 9, 47, 187, 630, 1, 10, 57, 244, 874, 2772, 1, 11, 68, 312, 1186, 3958, 12012, 1, 12, 80, 392, 1578, 5536, 17548, 51480, 1, 13, 93, 485, 2063, 7599, 25147, 76627, 218790, 1, 14, 107, 592, 2655, 10254, 35401, 112028, 330818
Offset: 0

Author

Emeric Deutsch, Jul 24 2008

Keywords

Comments

a(q,n) = a(q-1,n) + a(q+1,n-1).
Row 0 is A002457; row 1 is A000531; row 2 is A029760; row 3 is A045720.

Examples

			Array starts:
  1, 6, 30, 140,  630, ...
  1, 7, 38, 187,  874, ...
  1, 8, 47, 244, 1186, ...
  1, 9, 57, 312, 1578, ...
  ...
		

Crossrefs

Programs

  • Maple
    a:=proc(q,n) options operator, arrow: sum(4^i*binomial(2*n-2*i+q, n-i), i= 0.. n) end proc: aa:=proc(q,n) options operator, arrow: a(q-1,n-1) end proc: matrix(10,10,aa); # yields sequence in matrix form

Formula

a(q,n) = Sum_{i=0..n} 4^i*binomial(2n-2i+q, n-i).
Showing 1-5 of 5 results.