A158109 G.f.: A(x) = exp(Sum_{n>=1} C(2n-1,n)*L(n)*x^n/n) such that Sum_{n>=1} L(n)*x^n/n = log(1+x*A(x)) where L(n) = A158259(n) and C(2n-1,n) = A001700(n-1).
1, 1, 2, 15, 479, 58981, 27087299, 46407723445, 298505825690021, 7255847001783419768, 670260315103084510835973, 236409648316126537191063108559, 319643614642063671478190549232176669
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 15*x^3 + 479*x^4 + 58981*x^5 +... log(1+x*A(x)) = x + 1*x^2/2 + 4*x^3/3 + 53*x^4/4 + 2321*x^5/5 +... log(A(x)) = x + 3*x^2/2 + 40*x^3/3 + 1855*x^4/4 + 292446*x^5/5 +... log(A(x)) = x + 3*1*x^2/2 + 10*4*x^3/3 + 35*53*x^4/4 + 126*2321*x^5/5 +...
Programs
-
PARI
{a(n)=local(A=1+x);if(n==0,1,for(i=1,n,A=exp(sum(m=1,n,binomial(2*m-1,m)*x^m*polcoeff(log(1+x*A+x*O(x^m)),m))+x*O(x^n)));polcoeff(A,n))}