A176287 Diagonal sums of number triangle A092392.
1, 2, 7, 23, 81, 291, 1066, 3955, 14818, 55937, 212428, 810664, 3106167, 11942261, 46047897, 178000950, 689580319, 2676598447, 10406929687, 40525045518, 158022343991, 616950024334, 2411395005316, 9434753907065, 36948692202031
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..25], n-> Sum([0..Int(n/2)], k-> Binomial(2*n-3*k, n-k) )); # G. C. Greubel, Nov 25 2019
-
Magma
[ &+[Binomial(2*n-3*k, n-k): k in [0..Floor(n/2)]] : n in [0..25]]; // G. C. Greubel, Nov 25 2019
-
Maple
seq( add(binomial(2*n-3*k, n-k), k=0..floor(n/2)) , n=0..25); # G. C. Greubel, Nov 25 2019
-
Mathematica
CoefficientList[Series[2/(Sqrt[1-4*x]*(2-x+x*Sqrt[1-4*x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *) a[n_]:= Sum[Binomial[2*n-3*k, n-k], {k, 0, Floor[n/2]}]; Table[a[n], {n,0,25}] (* G. C. Greubel, Oct 19 2016 *)
-
PARI
a(n) = sum(k=0, n\2, binomial(2*n-3*k, n-k)); \\ Michel Marcus, Oct 20 2016
-
Sage
[sum(binomial(2*n-3*k, n-k) for k in (0..floor(n/2))) for n in (0..25)] # G. C. Greubel, Nov 25 2019
Formula
G.f.: 1/(sqrt(1-4*x)*(1-x^2*c(x))) = 2/(sqrt(1-4*x)*(2-x+x*sqrt(1-4*x))), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/2)} C(2n-3k,n-k).
D-finite with recurrence: 2*n*a(n) +(6-11*n)*a(n-1) +(13*n-16)*a(n-2) +2*(5-n)*a(n-3) +3*(2-3*n)*a(n-4) +2*(2*n-5)*a(n-5)=0. - R. J. Mathar, Nov 15 2012 [Verified with Maple's FindRE and MinimalRecurrence functions, Georg Fischer, Nov 03 2022]
a(n) ~ 2^(2*n+3) / (7*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 04 2014
Comments