cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A178792 Dot product of the rows of triangle A046899 with vector (1,2,4,8,...) (= A000079).

Original entry on oeis.org

1, 5, 31, 209, 1471, 10625, 78079, 580865, 4361215, 32978945, 250806271, 1916280833, 14698053631, 113104519169, 872801042431, 6751535300609, 52337071357951, 406468580343809, 3162019821780991, 24634626678980609, 192179216026959871
Offset: 0

Views

Author

Joseph Abate, Jun 15 2010

Keywords

Comments

Hankel transform is A133460.

Examples

			a(3) = (1,4,10,20)dot(1,2,4,8) = 209.
		

Crossrefs

Row sums of A091811.

Programs

  • Maple
    a := n -> binomial(2*n+2,n+1)*hypergeom([-n, n + 1], [n + 2], -1)/2:
    seq(simplify(a(n)), n=0..20); # Peter Luschny, Feb 21 2017
  • Mathematica
    CoefficientList[Series[(3-Sqrt[1-8*x])/(2*(1+x)*Sqrt[1-8*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
    Table[Sum[2^k*Binomial[n + k, k], {k, 0, n}], {n, 0, 20}] (* Michael De Vlieger, Oct 28 2016 *)
    a[n_] := (-1)^(n + 1) - 2^(n + 1) (2n + 1) Binomial[2n, n] Hypergeometric2F1[1, 2n + 2, n + 2, 2]/(n + 1); Array[a, 22, 0] (* Robert G. Wilson v, Jul 21 2018 *)

Formula

a(n) = Sum_{k = 0..n} A046899(n,k)*2^k = Sum_{k = 0..n} 2^k * binomial(n+k,k).
G.f.: (1/3)*(4/sqrt(1 - 8*x) - 1/(1 - x*c(2*x))) with c(x) the g.f. of the Catalan numbers A000108.
a(n) = (1/3)*(4*2^n*A000984(n) - A064062(n)).
a(n) + a(n+1) = 6*2^n*A001700(n).
O.g.f.: (3 - sqrt(1 - 8*x))/(2*(1 + x)*sqrt(1 - 8*x)). - Peter Bala, Apr 10 2012
a(n) = 2^n *binomial(2+2*n,1+n)*2F1(1, 2+2*n; 2+n;-1). - Olivier Gérard, Aug 19 2012
D-finite with recurrence n*a(n) = (7*n - 4)*a(n-1) + 4*(2*n - 1)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(3n+2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
a(n) = Sum_{k = 0..n} binomial(k+n,n) * binomial(2*n+1,n-k). - Vladimir Kruchinin, Oct 28 2016
a(n) = 1/2*(n + 1)*binomial(2*n+2,n+1)*Sum_{k = 0..n} binomial(n,k)/(n + k + 1). - Peter Bala, Feb 21 2017
a(n) = binomial(2*n+2,n+1)*hypergeom([-n, n+1], [n+2], -1)/2. - Peter Luschny, Feb 21 2017
a(n) = (-1)^(n+1) - 2^(n+1)*(2*n+1)*binomial(2*n,n)*hypergeom([1, 2*n+2], [n+2], 2)/(n+1). - John M. Campbell, Jul 14 2018
From Akiva Weinberger, Dec 06 2024: (Start)
a(n) = (2*n + 1)!/(n!^2) * Integral_{t=0..1} (t + t^2)^n dt.
a(n) = (Integral_{t=0..1} (t + t^2)^n dt) / (Integral_{t=0..1} (t - t^2)^n dt). (End)
a(n) = (-1)^n * Sum_{k=0..n} binomial(2*n+1,k) * (-2)^k. - André M. Timpanaro, Dec 15 2024
From Seiichi Manyama, Aug 04 2025: (Start)
a(n) = [x^n] (1+x)^(2*n+1)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x) * (1-2*x)^(n+1)). (End)

A158815 Triangle T(n,k) read by rows, matrix product of A046899(row-reversed) * A130595.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 13, 5, 1, 1, 46, 16, 6, 1, 1, 166, 58, 19, 7, 1, 1, 610, 211, 71, 22, 8, 1, 1, 2269, 781, 261, 85, 25, 9, 1, 1, 8518, 2920, 976, 316, 100, 28, 10, 1, 1, 32206, 11006, 3676, 1196, 376, 116, 31, 11, 1, 1
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Mar 27 2009

Keywords

Comments

The left factor of the matrix product is the triangle which starts
1;
2, 1;
6, 3, 1;
20, 10, 4, 1;
a row-reversed version of A046899, equivalent to the triangular view of the array A092392. The right factor is the inverse of the matrix A007318, which is A130595.
Swapping the two factors, A007318^(-1) * A046899(row-reversed) would generate A158793.
Riordan array (f(x), g(x)) where f(x) is the g.f. of A026641 and where g(x) is the g.f. of A000957. - Philippe Deléham, Dec 05 2009
T(n,k) is the number of nonnegative paths consisting of upsteps U=(1,1) and downsteps D=(1,-1) of length 2n with k low peaks. (A low peak has its peak vertex at height 1.) Example: T(3,1)=5 counts UDUUUU, UDUUUD, UDUUDU, UDUUDD, UUDDUD. - David Callan, Nov 21 2011
Matrix product P^2 * Q * P^(-2), where P denotes Pascal's triangle A007318 and Q denotes A061554 (formed from P by sorting the rows into descending order). Cf. A158793 and A171243. - Peter Bala, Jul 13 2021

Examples

			The triangle starts
       1;
       1,     1;
       4,     1,     1;
      13,     5,     1,    1;
      46,    16,     6,    1,    1;
     166,    58,    19,    7,    1,   1;
     610,   211,    71,   22,    8,   1,   1;
    2269,   781,   261,   85,   25,   9,   1,  1;
    8518,  2620,   976,  316,  100,  28,  10,  1,  1;
   32206, 11006,  3676, 1196,  376, 116,  31, 11,  1, 1;
  122464, 41746, 13938, 4544, 1442, 441, 133, 34, 12, 1, 1;
  ...
		

Crossrefs

Programs

  • Maple
    A158815 := proc (n, k)
      add((-1)^(j+k)*binomial(2*n-j, n)*binomial(j, k), j = 0..n);
    end proc:
    seq(seq(A158815(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
  • Mathematica
    T[n_,k_]:= T[n,k]= Sum[(-1)^(j+k)*Binomial[j,k]*Binomial[2*n-j,n], {j,0,n}];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2021 *)
  • Sage
    def A158815(n,k): return sum( (-1)^(j+k)*binomial(2*n-j, n)*binomial(j, k) for j in (0..n) )
    flatten([[A158815(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 22 2021

Formula

Sum_{k=0..n} T(n,k) = A046899(n).
T(n,0) = A026641(n).
Sum_{k=0..n} T(n,k)*x^k = A026641(n), A000984(n), A001700(n), A000302(n) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Dec 03 2009
T(n, k) = Sum_{j=0..n} binomial(j, k)*binomial(2*n-j, n). - Peter Bala, Jul 13 2021

A046900 Triangle inverse to that in A046899.

Original entry on oeis.org

1, -1, 1, 1, -3, 2, 1, 3, -10, 6, -1, 9, 10, -42, 24, -17, 21, 50, 42, -216, 120, -107, -33, 230, 294, 216, -1320, 720, -415, -1173, 670, 1974, 1944, 1320, -9360, 5040, 1231, -13515, -4510, 11130, 17064, 14520, 9360, -75600, 40320, 56671, -113739, -131230, 20202, 136296, 157080, 121680, 75600
Offset: 0

Views

Author

Keywords

Comments

Sequence gives numerators; denominators are A001813.

Examples

			1; -1/2 1/2; 1/12 -3/12 2/12; ...
		

References

  • H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.

Crossrefs

Programs

  • Maple
    with(linalg): b:=proc(n,k) if k<=n then binomial(n+k,k) else 0 fi end: bb:=(n,k)->b(n-1,k-1): B:=matrix(12,12,bb): A:=inverse(B): a:=(n,k)->((2*n-2)!/(n-1)!)*A[n,k]: for n from 0 to 10 do seq(a(n,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch
  • Mathematica
    max = 10; b[n_, k_] := If[k <= n, Binomial[n+k, k], 0]; BB = Table[b[n, k], {n, 0, max-1}, {k, 0, max-1}]; AA = Inverse[BB]; a[n_, k_] := ((2n-2)!/(n-1)!)*AA[[n, k]]; Flatten[ Table[ a[n, k], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Aug 08 2012, after Emeric Deutsch *)

Extensions

More terms from Emeric Deutsch, Jun 25 2005

A089885 Triangle A046899 read mod 2.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Benoit Cloitre, Jan 10 2004

Keywords

A063007 T(n,k) = binomial(n,k)*binomial(n+k,k), 0 <= k <= n, triangle read by rows.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 12, 30, 20, 1, 20, 90, 140, 70, 1, 30, 210, 560, 630, 252, 1, 42, 420, 1680, 3150, 2772, 924, 1, 56, 756, 4200, 11550, 16632, 12012, 3432, 1, 72, 1260, 9240, 34650, 72072, 84084, 51480, 12870, 1, 90, 1980, 18480, 90090, 252252, 420420, 411840, 218790, 48620
Offset: 0

Views

Author

Henry Bottomley, Jul 02 2001

Keywords

Comments

T(n,k) is the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's Cluster algebra of finite type B_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of triangle A008459 (squares of binomial coefficients). For example, x^2+6*x+6 = y^2+4*y+1. - Paul Boddington, Mar 07 2003
T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k N=(0,1) steps. E.g. T(2,0)=1 because we have DD; T(2,1) = 6 because we have NED, NDE, EDN, END, DEN and DNE; T(2,2)=6 because we have NNEE, NENE, NEEN, EENN, ENEN and ENNE. - Emeric Deutsch, Apr 20 2004
Another version of [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] = 1; 1, 0; 1, 2, 0; 1, 6, 6, 0; 1, 12, 30, 20, 0; ..., where DELTA is the operator defined in A084938. - Philippe Deléham Apr 15 2005
Terms in row n are the coefficients of the Legendre polynomial P(n,2x+1) with increasing powers of x.
From Peter Bala, Oct 28 2008: (Start)
Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type B_n (a cyclohedron) [Fomin & Reading, p.60]. See A008459 for the corresponding h-vectors for associahedra of type B_n and A001263 and A033282 respectively for the h-vectors and f-vectors for associahedra of type A_n.
An alternative description of this triangle in terms of f-vectors is as follows. Let A_n be the root lattice generated as a monoid by {e_i - e_j: 0 <= i,j <= n+1}. Let P(A_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the f-vectors of a unimodular triangulation of P(A_n) [Ardila et al.]. A008459 is the corresponding array of h-vectors for these type A_n polytopes. See A127674 (without the signs) for the array of f-vectors for type C_n polytopes and A108556 for the array of f-vectors associated with type D_n polytopes.
The S-transform on the ring of polynomials is the linear transformation of polynomials that is defined on the basis monomials x^k by S(x^k) = binomial(x,k) = x(x-1)...(x-k+1)/k!. Let P_n(x) denote the S-transform of the n-th row polynomial of this array. In the notation of [Hetyei] these are the Stirling polynomials of the type B associahedra. The first few values are P_1(x) = 2*x + 1, P_2(x) = 3*x^2 + 3*x + 1 and P_3(x) = (10*x^3 + 15*x^2 + 11*x + 3)/3. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane, that is, the polynomials P_n(-x) satisfy a Riemann hypothesis. See A142995 for further details. The sequence of values P_n(k) for k = 0,1,2,3, ... produces the n-th row of A108625. (End)
This is the row reversed version of triangle A104684. - Wolfdieter Lang, Sep 12 2016
T(n, k) is also the number of (n-k)-dimensional faces of a convex n-dimensional Lipschitz polytope of real functions f defined on the set X = {1, 2, ..., n+1} which satisfy the condition f(n+1) = 0 (see Gordon and Petrov). - Stefano Spezia, Sep 25 2021
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial ((x+1)*(x+2)*(x+3)*...*(x+n) / n!)^2 in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 09 2022
Chapoton's observation above is correct: the precise expansion is ((x+1)*(x+2)*(x+3)*...*(x+n)/ n!)^2 = Sum_{k = 0..n} (-1)^k*T(n,n-k)*binomial(x+2*n-k, 2*n-k), as can be verified using the WZ algorithm. For example, n = 3 gives ((x+1)*(x+2)*(x+3)/3!)^2 = 20*binomial(x+6,6) - 30*binomial(x+5,5) + 12*binomial(x+4,4) - binomial(x+3,3). - Peter Bala, Jun 24 2023

Examples

			The triangle T(n, k) starts:
  n\k 0  1    2     3     4      5      6      7      8     9
  0:  1
  1:  1  2
  2:  1  6    6
  3:  1 12   30    20
  4:  1 20   90   140    70
  5:  1 30  210   560   630    252
  6:  1 42  420  1680  3150   2772    924
  7:  1 56  756  4200 11550  16632  12012   3432
  8:  1 72 1260  9240 34650  72072  84084  51480  12870
  9:  1 90 1980 18480 90090 252252 420420 411840 218790 48620
... reformatted by _Wolfdieter Lang_, Sep 12 2016
From _Petros Hadjicostas_, Jul 11 2020: (Start)
Its inverse (from Table II, p. 92, in Ser's book) is
   1;
  -1/2,  1/2;
   1/3, -1/2,    1/6;
  -1/4,  9/20,  -1/4,   1/20;
   1/5, -2/5,    2/7,  -1/10,  1/70;
  -1/6,  5/14, -25/84,  5/36, -1/28,  1/252;
   1/7, -9/28,  25/84, -1/6,   9/154, -1/84, 1/924;
   ... (End)
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 366.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, Table I, p. 92.
  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

See A331430 for an essentially identical triangle, except with signed entries.
Columns include A000012, A002378, A033487 on the left and A000984, A002457, A002544 on the right.
Main diagonal is A006480.
Row sums are A001850. Alternating row sums are A033999.
Cf. A033282 (f-vectors type A associahedra), A108625, A080721 (f-vectors type D associahedra).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Haskell
    a063007 n k = a063007_tabl !! n !! k
    a063007_row n = a063007_tabl !! n
    a063007_tabl = zipWith (zipWith (*)) a007318_tabl a046899_tabl
    -- Reinhard Zumkeller, Nov 18 2014
    
  • Magma
    /* As triangle: */ [[Binomial(n,k)*Binomial(n+k,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 03 2015
  • Maple
    p := (n,x) -> orthopoly[P](n,1+2*x): seq(seq(coeff(p(n,x),x,k), k=0..n), n=0..9);
  • Mathematica
    Flatten[Table[Binomial[n, k]Binomial[n + k, k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Dec 24 2011 *)
    Table[CoefficientList[Hypergeometric2F1[-n, n + 1, 1, -x], x], {n, 0, 9}] // Flatten
    (* Peter Luschny, Mar 09 2018 *)
  • PARI
    {T(n, k) = local(t); if( n<0, 0, t = (x + x^2)^n; for( k=1, n, t=t'); polcoeff(t, k) / n!)} /* Michael Somos, Dec 19 2002 */
    
  • PARI
    {T(n, k) = binomial(n, k) * binomial(n+k, k)} /* Michael Somos, Sep 22 2013 */
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, (n+k)! / (k!^2 * (n-k)!))} /* Michael Somos, Sep 22 2013 */
    

Formula

T(n, k) = (n+k)!/(k!^2*(n-k)!) = T(n-1, k)*(n+k)/(n-k) = T(n, k-1)*(n+k)*(n-k+1)/k^2 = T(n-1, k-1)*(n+k)*(n+k-1)/k^2.
binomial(x, n)^2 = Sum_{k>=0} T(n,k) * binomial(x, n+k). - Michael Somos, May 11 2012
T(n, k) = A109983(n, k+n). - Michael Somos, Sep 22 2013
G.f.: G(t, z) = 1/sqrt(1-2*z-4*t*z+z^2). Row generating polynomials = P_n(1+2z), i.e., T(n, k) = [z^k] P_n(1+2*z), where P_n are the Legendre polynomials. - Emeric Deutsch, Apr 20 2004
Sum_{k>=0} T(n, k)*A000172(k) = Sum_{k>=0} T(n, k)^2 = A005259(n). - Philippe Deléham, Jun 08 2005
1 + z*d/dz(log(G(t,z))) = 1 + (1 + 2*t)*z + (1 + 8*t + 8*t^2)*z^2 + ... is the o.g.f. for a signed version of A127674. - Peter Bala, Sep 02 2015
If R(n,t) denotes the n-th row polynomial then x^3 * exp( Sum_{n >= 1} R(n,t)*x^n/n ) = x^3 + (1 + 2*t)*x^4 + (1 + 5*t + 5*t^2)*x^5 + (1 + 9*t + 21*t^2 + 14*t^3)*x^6 + ... is an o.g.f for A033282. - Peter Bala, Oct 19 2015
P(n,x) := 1/(1 + x)*Integral_{t = 0..x} R(n,t) dt are (modulo differences of offset) the row polynomials of A033282. - Peter Bala, Jun 23 2016
From Peter Bala, Mar 09 2018: (Start)
R(n,x) = Sum_{k = 0..n} binomial(2*k,k)*binomial(n+k,n-k)*x^k.
R(n,x) = Sum_{k = 0..n} binomial(n,k)^2*x^k*(1 + x)^(n-k).
n*R(n,x) = (1 + 2*x)*(2*n - 1)*R(n-1,x) - (n - 1)*R(n-2,x).
R(n,x) = (-1)^n*R(n,-1 - x).
R(n,x) = 1/n! * (d/dx)^n ((x^2 + x)^n). (End)
The row polynomials are R(n,x) = hypergeom([-n, n + 1], [1], -x). - Peter Luschny, Mar 09 2018
T(n,k) = C(n+1,k)*A009766(n,k). - Bob Selcoe, Jan 18 2020 (Connects this triangle with the Catalan triangle. - N. J. A. Sloane, Jan 18 2020)
If we let A(n,k) = (-1)^(n+k)*(2*k+1)*(n*(n-1)*...*(n-(k-1)))/((n+1)*...*(n+(k+1))) for n >= 0 and k = 0..n, and we consider both T(n,k) and A(n,k) as infinite lower triangular arrays, then they are inverses of one another. (Empty products are by definition 1.) See the example below. The rational numbers |A(n,k)| appear in Table II on p. 92 in Ser's (1933) book. - Petros Hadjicostas, Jul 11 2020
From Peter Bala, Nov 28 2021: (Start)
Row polynomial R(n,x) = Sum_{k >= n} binomial(k,n)^2 * x^(k-n)/(1+x)^(k+1) for x > -1/2.
R(n,x) = 1/(1 + x)^(n+1) * hypergeom([n+1, n+1], [1], x/(1 + x)).
R(n,x) = (1 + x)^n * hypergeom([-n, -n], [1], x/(1 + x)).
R(n,x) = hypergeom([(n+1)/2, -n/2], [1], -4*x*(1 + x)).
If we set R(-1,x) = 1, we can run the recurrence n*R(n,x) = (1 + 2*x)*(2*n - 1)*R(n-1,x) - (n - 1)*R(n-2,x) backwards to give R(-n,x) = R(n-1,x).
R(n,x) = [t^n] ( (1 + t)*(1 + x*(1 + t)) )^n. (End)
n*T(n,k) = (2*n-1)*T(n-1,k) + (4*n-2)*T(n-1,k-1) - (n-1)*T(n-2,k). - Fabián Pereyra, Jun 30 2022
From Peter Bala, Oct 07 2024: (Start)
n-th row polynomial R(n,x) = Sum_{k = 0..n} binomial(n, k) * x^k o (1 + x)^(n-k), where o denotes the black diamond product of power series as defined by Dukes and White (see Bala, Section 4.4, exercise 3).
Denote this triangle by T. Then T * transpose(T) = A143007, the square array of crystal ball sequences for the A_n X A_n lattices.
Let S denote the triangle ((-1)^(n+k)*T(n, k))n,k >= 0, a signed version of this triangle. Then S^(-1) * T = A007318, Pascal's triangle; it appears that T * S^(-1) = A110098.
T = A007318 * A115951. (End)

A092392 Triangle read by rows: T(n,k) = C(2*n - k,n), 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 20, 10, 4, 1, 70, 35, 15, 5, 1, 252, 126, 56, 21, 6, 1, 924, 462, 210, 84, 28, 7, 1, 3432, 1716, 792, 330, 120, 36, 8, 1, 12870, 6435, 3003, 1287, 495, 165, 45, 9, 1, 48620, 24310, 11440, 5005, 2002, 715, 220, 55, 10, 1, 184756, 92378, 43758, 19448, 8008, 3003, 1001, 286, 66, 11, 1
Offset: 0

Views

Author

Ralf Stephan, Mar 21 2004

Keywords

Comments

First column is C(2*n,n) or A000984. Central coefficients are C(3*n,n) or A005809. - Paul Barry, Oct 14 2009
T(n,k) = A046899(n,n-k), k = 0..n-1. - Reinhard Zumkeller, Jul 27 2012
From Peter Bala, Nov 03 2015: (Start)
Viewed as the square array [binomial (2*n + k, n + k)]n,k>=0 this is the generalized Riordan array ( 1/sqrt(1 - 4*x),c(x) ) in the sense of the Bala link, where c(x) is the o.g.f. for A000108.
The square array factorizes as ( 1/(2 - c(x)),x*c(x) ) * ( 1/(1 - x),1/(1 - x) ), which equals the matrix product of A100100 with the square Pascal matrix [binomial (n + k,k)]n,k>=0. See the example below. (End)

Examples

			From _Paul Barry_, Oct 14 2009: (Start)
Triangle begins
  1,
  2, 1,
  6, 3, 1,
  20, 10, 4, 1,
  70, 35, 15, 5, 1,
  252, 126, 56, 21, 6, 1,
  924, 462, 210, 84, 28, 7, 1,
  3432, 1716, 792, 330, 120, 36, 8, 1
Production array is
  2, 1,
  2, 1, 1,
  2, 1, 1, 1,
  2, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
As a square array = A100100 * square Pascal matrix:
  /1   1  1  1 ...\   / 1          \/1 1  1  1 ...\
  |2   3  4  5 ...|   | 1 1        ||1 2  3  4 ...|
  |6  10 15 21 ...| = | 3 2 1      ||1 3  6 10 ...|
  |20 35 56 84 ...|   |10 6 3 1    ||1 4 10 20 ...|
  |70 ...         |   |35 ...      ||1 ...        |
- _Peter Bala_, Nov 03 2015
		

Crossrefs

Programs

  • Haskell
    a092392 n k = a092392_tabl !! (n-1) !! (k-1)
    a092392_row n = a092392_tabl !! (n-1)
    a092392_tabl = map reverse a046899_tabl
    -- Reinhard Zumkeller, Jul 27 2012
    
  • Magma
    /* As a triangle */ [[Binomial(2*n-k, n): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 22 2017
  • Maple
    A092392 := proc(n,k)
        binomial(2*n-k,n-k) ;
    end proc:
    seq(seq(A092392(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
  • Mathematica
    Table[Binomial[2 n - k, n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 19 2016 *)
  • Maxima
    C(x):=(1-sqrt(1-4*x))/2;
    A(x,y):=(1/sqrt(1-4*x))/(1-y*C(x));
    taylor(A(x,y),y,0,10,x,0,10); /* Vladimir Kruchinin, Mar 19 2016 */
    
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(2*n - k,n), ", "))) \\ G. C. Greubel, Nov 22 2017
    

Formula

As a number triangle, this is T(n, k) = if(k <= n, C(2*n - k, n), 0). Its row sums are C(2*n + 1, n + 1) = A001700. Its diagonal sums are A176287. - Paul Barry, Apr 23 2005
G.f. of column k: 2^k/[sqrt(1 - 4*x)*(1 + sqrt(1 - 4*x))^k].
As a number triangle, this is the Riordan array (1/sqrt(1 - 4*x), x*c(x)), c(x) the g.f. of A000108. - Paul Barry, Jun 24 2005
G.f.: A(x,y)=1/sqrt(1 - 4*x)/(1-y*x*C(x)), where C(x) is g.f. of Catalan numbers. - Vladimir Kruchinin, Mar 19 2016

Extensions

Diagonal sums comment corrected by Paul Barry, Apr 14 2010
Offset corrected by R. J. Mathar, Feb 08 2013

A092440 a(n) = 2^(2n+1) - 2^(n+1) + 1.

Original entry on oeis.org

1, 5, 25, 113, 481, 1985, 8065, 32513, 130561, 523265, 2095105, 8384513, 33546241, 134201345, 536838145, 2147418113, 8589803521, 34359476225, 137438429185, 549754765313, 2199021158401, 8796088827905, 35184363700225
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004

Keywords

Comments

Arises from enumeration of domino tilings of Aztec Pillow-like regions.
Each beginning with 1, the subsequences of A046899 are 1; 1,2; 1,3,6; 1,4,10,20 and so forth. Create triangles with the sides being equal to each of these subsequences; the interior members T(i,j)=T(i-1,j-1) + T(i-1,j). The sum of all members for each triangle will reproduce the terms of this sequence. Example using the fourth subsequence 1,4,10,20 will give row(1)=1; row(2)=4,4; row(3)=10,8,10; row(4)=20,18,18,20 giving a sum for all members of 113, the fourth term in the sequence. - J. M. Bergot, Oct 17 2012
Also, the number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 510", based on the 5-celled von Neumann neighborhood. - Robert Price, May 04 2016
Let M be some square matrix of rank 2^n, containing the positive real value X everywhere except on the diagonal; let Y be some complex value with phase 3*Pi/4 everywhere else (thus all coefficients on the diagonal). Then, for M to be a unitary matrix, X must be 1/sqrt(a(n)). - Thomas Baruchel, Aug 10 2020

References

  • J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

Formula

a(n) = 2^(2n+1) - 2^(n+1) + 1.
From Colin Barker, Nov 22 2012: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3).
G.f.: -(4*x^2-2*x+1)/((x-1)*(2*x-1)*(4*x-1)). (End)
a(n) = A000225(n)^2 + (A000225(n) + 1)^2. - César Aguilera, May 28 2023

A059481 Triangle read by rows. T(n, k) = binomial(n+k-1, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1716, 1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378
Offset: 0

Views

Author

Fabian Rothelius, Feb 04 2001

Keywords

Comments

T(n,k) is the number of ways to distribute k identical objects in n distinct containers; containers may be left empty.
T(n,k) is the number of nondecreasing functions f from {1,...,k} to {1,...,n}. - Dennis P. Walsh, Apr 07 2011
Coefficients of Faber polynomials for function x^2/(x-1). - Michael Somos, Sep 09 2003
Consider k-fold Cartesian products CP(n,k) of the vector A(n)=[1,2,3,...,n].
An element of CP(n,k) is a n-tuple T_t of the form T_t=[i_1,i_2,i_3,...,i_k] with t=1,...,n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j > i_(j+1), T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j > i_(j+1)).
The indicator function which tests on i_j = i_(j+1) generates A158497, which contains further examples of this type of counting.
Triangle of the numbers of combinations of k elements with repetitions from n elements {1,2,...,n} (when every element i, i=1,...,n, appears in a k-combination either 0, or 1, or 2, ..., or k times). - Vladimir Shevelev, Jun 19 2012
G.f. for Faber polynomials is -log(-t*x-(1-sqrt(1-4*t))/2+1)=sum(n>0, T(n,k)*t^k/n). - Vladimir Kruchinin, Jul 04 2013
Values of complete homogeneous symmetric polynomials with all arguments equal to 1, or, equivalently, the number of monomials of degree k in n variables. - Tom Copeland, Apr 07 2014
Row k >= 0 of the infinite square array A[k,n] = C(n,k), n >= 0, would start with k zeros in front of the first nonzero element C(k,k) = 1; this here is the triangle obtained by taking the first k+1 nonzero terms C(k .. 2k, k) of rows k = 0, 1, 2, ... of that array. - M. F. Hasler, Mar 05 2017

Examples

			The triangle T(n,k), n >= 0, 0 <= k <= n, begins
  1      A000217
  1 1   /     A000292
  1 2  3    /    A000332
  1 3  6  10    /    A000389
  1 4 10  20  35    /     A000579
  1 5 15  35  70 126     /
  1 6 21  56 126 252  462
  1 7 28  84 210 462  924 1716
  1 8 36 120 330 792 1716 3432 6435
.
T(3,2)=6 considers the CP with the 3^2=9 elements (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3), and does not count the 3 of them which are (2,1),(3,1) and (3,2).
T(3,3) = 10 because the ways to distribute the 3 objects into the three containers are: (3,0,0) (0,3,0) (0,0,3) (2,1,0) (1,2,0) (2,0,1) (1,0,2) (0,1,2) (0,2,1) (1,1,1), for a total of 10 possibilities.
T(3,3)=10 since (x^2/(x-1))^3 = (x+1+1/x+O(1/x^2))^3 = x^3+3x^2+6x+10+O(x).
T(4,2)=10 since there are 10 nondecreasing functions f from {1,2} to {1,2,3,4}. Using <f(1),f(2)> to denote such a function, the ten functions are <1,1>, <1,2>, <1,3>, <1,4>, <2,2>, <2,3>, <2,4>, <3,3>, <3,4>, and <4,4>. - _Dennis P. Walsh_, Apr 07 2011
T(4,0) + T(4,1) + T(4,2) + T(4,3) = 1 + 4 + 10 + 20 = 35 = T(4,4). - _Jonathan Sondow_, Jun 28 2014
From _Paul Curtz_, Jun 18 2018: (Start)
Consider the array
2,    1,    1,    1,    1,    1,     ... = A054977(n)
1,    1/2,  1/3,  1/4,  1/5,  1/6,   ... = 1/(n+1) = 1/A000027(n)
1/3,  1/6,  1/10, 1/15, 1/21, 1/28,  ... = 2/((n+2)*(n+3)) = 1/A000217(n+2)
1/10, 1/20, 1/35, 1/56, 1/84, 1/120, ... = 6/((n+3)*(n+4)*(n+5)) =1/A000292(n+2) (see the triangle T(n,k)).
Every row is an autosequence of the second kind. (See OEIS Wiki, Autosequence.)
By decreasing antidiagonals the denominator of the array is a(n).
Successive vertical denominators: A088218(n), A000984(n), A001700(n), A001791(n+1), A002054(n), A002694(n).
Successive diagonal denominators: A165817(n), A005809(n), A045721(n), A025174(n+1), A004319(n). (End)
Without the first row (2, 1, 1, 1, ... ), the array leads to A165257(n) instead of a(n). - _Paul Curtz_, Jun 19 2018
		

References

  • R. Grimaldi, Discrete and Combinatorial Mathematics, Addison-Wesley, 4th edition, chapter 1.4.

Crossrefs

Columns: T(n,1) = A000027(n), n >= 1. T(n,2) = A000217(n) = A161680(n+1), n >= 2. T(n,3) = A000292(n), n >= 3. T(n,4) = A000332(n+3), n >= 4. T(n,5) = A000389(n+4), n >= 5. T(n,6) = A000579(n+5), n >=6. T(n,k) = A001405(n+k-1) for k <= n <= k+2. [Corrected and extended by M. F. Hasler, Mar 05 2017]
Rows: T(5,k) = A000332(k+4). T(6,k) = A000389(k+5). T(7,k) = A000579(k+6).
Diagonals: T(n,n) = A001700(n-1). T(n,n-1) = A000984(n-1).
T(n,k) = A046899(n-1,k). - R. J. Mathar, Mar 26 2009
Take Pascal's triangle A007318, delete entries to the right of a vertical line just right of center, then scan the diagonals.
For a signed version of this triangle see A027555.
Row sums give A000984.
Cf. A007318, A158497, A100100 (mirrored), A009766.

Programs

  • GAP
    Flat(List([0..10], n->List([0..n], k->Binomial(n+k-1, k)))); # Stefano Spezia, Oct 30 2018
    
  • Haskell
    a059481 n k = a059481_tabl !! n !! n
    a059481_row n = a059481_tabl !! n
    a059481_tabl = map reverse a100100_tabl
    -- Reinhard Zumkeller, Jan 15 2014
    
  • Magma
    &cat [[&*[ Binomial(n+k-1,k)]: k in [0..n]]: n in [0..30] ]; // Vincenzo Librandi, Apr 08 2011
    
  • Maple
    for n from 0 to 10 do for k from 0 to n do print(binomial(n+k-1,k)) ; od: od: # R. J. Mathar, Mar 31 2009
  • Mathematica
    t[n_, k_] := Binomial[n+k-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 09 2013 *)
    (* The combinatorial objects defined in the first comment can, for n >= 1, be generated by: *) r[n_, k_] := FrobeniusSolve[ConstantArray[1,n],k]; (* Peter Luschny, Jan 24 2019 *)
  • Maxima
    sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 0 thru n do disp(sjoin(makelist(binomial(i+j-1, j), j, 0, i), " ")); display_triangle(10); /* triangle output */ /* Stefano Spezia, Oct 30 2018 */
    
  • PARI
    {T(n, k) = binomial( n+k-1, k)}; \\ Michael Somos, Sep 09 2003, edited by M. F. Hasler, Mar 05 2017
    
  • PARI
    {T(n, k) = if( n<0, 0, polcoeff( Pol(((1 / (x - x^2) + x * O(x^n))^n + O(x)) * x^n), k))}; /* Michael Somos, Sep 09 2003 */
    
  • Sage
    [[binomial(n+k-1,k) for k in range(n+1)] for n in range(11)] # G. C. Greubel, Nov 21 2018

Formula

T(n,0) + T(n,1) + . . . + T(n,n-1) = T(n,n). - Jonathan Sondow, Jun 28 2014
From Peter Bala, Jul 21 2015: (Start)
T(n, k) = Sum_{j = k..n} (-1)^(k+j)*binomial(2*n,n+j)*binomial(n+j-1,j)* binomial(j,k) (gives the correct value T(n,k) = 0 for k > n).
O.g.f.: 1/2*( x*(2*x - 1)/(sqrt(1 - 4*t*x)*(1 - x - t)) + (1 + 2*x)/sqrt(1 - 4*t*x) + (1 - t)/(1 - x - t) ) = 1 + (1 + t)*x + (1 + 2*t + 3*t^2)*x^2 + (1 + 3*t + 6*t^2 + 10*t^3)*x^3 + ....
n-th row polynomial R(n,t) = [x^n] ( (1 + x)^2/(1 + x(1 - t)) )^n.
exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (1 + t)*x + (1 + 2*t + 2*t^2)*x^2 + (1 + 3*t + 5*t^2 + 5*t^3)*x^3 + ... is the o.g.f for A009766. (End)
a(n) = abs(A027555(n)). - M. F. Hasler, Mar 05 2017
For n >= k > 0, T(n, k) = Sum_{j=1..n} binomial(k + j - 2, k - 1) = Sum_{j=1..n} A007318(k + j - 2, k - 1). - Stefano Spezia, Oct 30 2018
T(n, k) = RisingFactorial(n, k) / k!. - Peter Luschny, Nov 24 2023

Extensions

Offset changed from 1 to 0 by R. J. Mathar, Jan 15 2013
Edited by M. F. Hasler, Mar 05 2017

A178300 Triangle T(n,k) = binomial(n+k-1,n) read by rows, 1 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 4, 10, 1, 5, 15, 35, 1, 6, 21, 56, 126, 1, 7, 28, 84, 210, 462, 1, 8, 36, 120, 330, 792, 1716, 1, 9, 45, 165, 495, 1287, 3003, 6435, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 1, 11, 66, 286, 1001, 3003, 8008, 19448, 43758, 92378, 1, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, 1, 13, 91, 455, 1820, 6188, 18564, 50388, 125970, 293930, 646646, 1352078
Offset: 1

Views

Author

Alford Arnold, May 24 2010

Keywords

Comments

Obtained from A176992 by reversing entries in each row, from A092392 by removing the left column and reversing entries in each row, or from A100100 by removing the first two columns and reversing entries in each row.
Also T(n,k) = count of degree k monomials in the Monomial symmetric polynomials m(mu,k) summed over all partitions mu of n.
T(n,k) is the number of ways to put n indistinguishable balls into k distinguishable boxes. - Dennis P. Walsh, Apr 11 2012
T(n,k) is the number of compositions of n into k parts if zeros are allowed as parts. - L. Edson Jeffery, Jul 23 2014
T(n,k) is the number of compositions (ordered partitions) of n+k into exactly k parts. - Juergen Will, Jan 23 2016
T(n,k) is the number of binary strings with exactly n zeros and k-1 ones. - Dennis P. Walsh, Apr 09 2016
T(n,k) is the number of functions f:[k-1]->[n+1] that are nondecreasing. There is a unique correspondence between such a function and a binary string with exactly n zeros and k-1 ones. Given a string, let the corresponding function f be defined by f(i)=1 + (the number of zeros in the string that precede the i-th one in the string) for i=1,..,k-1. - Dennis P. Walsh, Apr 09 2016

Examples

			Triangle begins
  1;
  1,    3;
  1,    4,   10;
  1,    5,   15,   35;
  1,    6,   21,   56,  126;
  1,    7,   28,   84,  210,  462;
  1,    8,   36,  120,  330,  792, 1716;
T(3,3)=10 since there are 10 ways to put 3 identical balls into 3 distinguishable boxes, namely, (OOO)()(), ()(OOO)(), ()()(OOO), (OO)(O)(), (OO)()(O), (O)(OO)(), ()(OO)(O), (O)()(OO), ()(O)(OO), and (O)(O)(O). - _Dennis P. Walsh_, Apr 11 2012
For example, T(3,3)=10 since there are ten functions f:[2]->[4] that are nondecreasing, namely, <f(1),f(2)> = <1,1> or <1,2> or <1,3> or <1,4> or <2,2> or <2,3> or <2,4> or <3,3> or <3,4> or <4,4>. - _Dennis P. Walsh_, Apr 09 2016
		

Crossrefs

Programs

  • Magma
    // As triangle
    [[Binomial(n+k-1,n): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 24 2016
  • Maple
    seq(seq(binomial(n+k-1,n),k=1..n),n=1..15); # Dennis P. Walsh, Apr 11 2012
  • Mathematica
    m[par_?PartitionQ, v_] := Block[{le = Length[par], it }, If[le > v, Return[0]]; it = Permutations[PadRight[par, v]]; Tr[ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ it, {1}]]];
    Table[Tr[(m[#, k] & /@ Partitions[l]) /. Subscript[x, ] -> 1], {l, 11}, {k, l}](* _Wouter Meeussen, Mar 11 2012 *)
    Quiet[Needs["Combinatorica`"], All]; Grid[Table[Length[Combinatorica`Compositions[n, k]], {n, 10}, {k, n}]] (* L. Edson Jeffery, Jul 24 2014 *)
    t[n_, k_] := Binomial[n + k - 1, n]; Table[ t[n, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Jul 24 2014 *)

Formula

T(n,k) = A046899(n,k-1) = A038675(n,k)/A008292(n,k).
T(n,1) = 1.
T(n,2) = n+1.
T(n,3) = A000217(n+1).
T(n,4) = A000292(n+1).
T(n,5) = A000332(n+4).
T(n,n) = A001700(n-1) = A088218(n). - Dennis P. Walsh, Apr 10 2012

A158793 Triangle read by rows: product of A130595 and A092392 considered as infinite lower triangular arrays.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 19, 9, 5, 1, 1, 51, 26, 11, 6, 1, 1, 141, 70, 34, 13, 7, 1, 1, 393, 197, 92, 43, 15, 8, 1, 1, 1107, 553, 265, 117, 53, 17, 9, 1, 1, 3139, 1570, 751, 346, 145, 64, 19, 10, 1, 1, 8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A002426 and where g(x) is the g.f. of A005043. - Philippe Deléham, Dec 05 2009
Matrix product P * Q * P^(-1), where P denotes Pascal's triangle A007318 and Q denotes A061554 (formed from P by sorting the rows into descending order). Cf. A158815 and A171243. - Peter Bala, Jul 13 2021

Examples

			First rows of the triangle:
     1;
     1,    1;
     3,    1,    1;
     7,    4,    1,   1;
    19,    9,    5,   1,   1;
    51,   26,   11,   6,   1,   1;
   141,   70,   34,  13,   7,   1,  1;
   393,  197,   92,  43,  15,   8,  1,  1;
  1107,  553,  265, 117,  53,  17,  9,  1,  1;
  3139, 1570,  751, 346, 145,  64, 19, 10,  1, 1;
  8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1;
		

Crossrefs

T(n, 0) = A002426(n), A005773 (row sums).

Programs

  • Maple
    A158793 := proc (n, k)
      add((-1)^(n+j)*binomial(n, j)*binomial(2*j-k, j-k), j = k..n);
    end proc:
    seq(seq(A158793(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
  • Mathematica
    T[n_, k_] := (-1)^(k + n) Binomial[n, k] HypergeometricPFQ[{k/2 + 1/2, k/2 + 1, k - n}, {k + 1, k + 1}, 4];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 17 2021 *)

Formula

T(n, m) = Sum_{k=m..n-1} A130595(n,k) * A092392(k+1,m+1), with the triangular interpretation of A092392.
Conjecture: T(n,1) = A113682(n-1). - R. J. Mathar, Oct 06 2009
Sum_{k=0..n} T(n,k)*x^k = A002426(n), A005773(n+1), A000244(n), A126932(n) for x = 0,1,2,3 respectively. - Philippe Deléham, Dec 03 2009
T(n, k) = (-1)^(k + n) binomial(n, k) hypergeom([k/2 + 1/2, k/2 + 1, k - n], [k + 1, k + 1], 4). - Peter Luschny, Jul 17 2021

Extensions

Simplified definition from R. J. Mathar, Oct 06 2009
Showing 1-10 of 22 results. Next