Original entry on oeis.org
1, 5, 9, 25, 49, 113, 225, 481, 961, 1985, 3969, 8065, 16129, 32513, 65025, 130561, 261121, 523265, 1046529, 2095105, 4190209, 8384513, 16769025, 33546241, 67092481, 134201345, 268402689, 536838145, 1073676289, 2147418113, 4294836225, 8589803521, 17179607041
Offset: 0
-
Table[1+2^(n+2)-2^(1+n/2)+(-1)^(n+1) 2^(1+n/2)-2^((n+1)/2)+(-1)^(n+2) 2^((n+1)/2), {n,0,28}] (*or*)
CoefficientList[Series[(-1 - 2 x + 6 x^2 - 4 x^3)/(-1 + 3 x - 6 x^3 + 4 x^4), {x,0,28}], x] (*or*)
LinearRecurrence[{3, 0, -6, 4}, {1, 5, 9, 25}, 29]
-
Vec((-1-2*x+6*x^2-4*x^3) / (-1+3*x-6*x^3+4*x^4) + O(x^29))
A169699
Total number of ON cells at stage n of two-dimensional 5-neighbor outer totalistic cellular automaton defined by "Rule 510".
Original entry on oeis.org
1, 5, 12, 25, 28, 56, 56, 113, 60, 120, 120, 240, 120, 240, 240, 481, 124, 248, 248, 496, 248, 496, 496, 992, 248, 496, 496, 992, 496, 992, 992, 1985, 252, 504, 504, 1008, 504, 1008, 1008, 2016, 504, 1008, 1008, 2016, 1008, 2016, 2016, 4032, 504, 1008, 1008, 2016
Offset: 0
When arranged into blocks of sizes 1,1,2,4,8,16,...:
1,
5,
12, 25,
28, 56, 56, 113,
60, 120, 120, 240, 120, 240, 240, 481,
124, 248, 248, 496, 248, 496, 496, 992, 248, 496, 496, 992, 496, 992, 992, 1985,
252, 504, 504, 1008, 504, 1008, 1008, 2016, 504, 1008, 1008, 2016, 1008, 2016, 2016, 4032, 504, 1008, 1008, 2016, 1008, 2016, 2016, 4032,
..., the initial terms in the rows (after the initial rows) have the form 2^m-4 and the final terms are given by A092440. The row beginning with 2^m-4 is divisible by 2^(m-2)-1 (see formula).
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Robert Price, Table of n, a(n) for n = 0..128
- N. H. Packard and S. Wolfram, Two-Dimensional Cellular Automata, Journal of Statistical Physics, 38 (1985), 901-946.
- N. J. A. Sloane, Illustration of first 28 generations
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
See
A253089 for 9-celled neighborhood version.
-
A000120 := proc(n) add(i,i=convert(n,base,2)) end:
ht:=n->floor(log[2](n));
f:=proc(n) local a,t1;
if n=0 then 1 else
a:=(2^(ht(n)+1)-1)*2^(1+A000120(n));
if 2^log[2](n)=n then a:=a+1; fi; a; fi; end;
[seq(f(n),n=0..65)]; # A169699
-
Map[Function[Apply[Plus,Flatten[ #1]]], CellularAutomaton[{ 510, {2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},100]]
ArrayPlot /@ CellularAutomaton[{510, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 28]
Entry revised with more precise definition, formula and additional information,
N. J. A. Sloane, Aug 24 2014
A220978
a(n) = 3^(2*n+1) - 3^(n+1) + 1: The left Aurifeuillian factor of 3^(6*n+3) + 1.
Original entry on oeis.org
1, 19, 217, 2107, 19441, 176419, 1592137, 14342347, 129120481, 1162202419, 10460176057, 94142647387, 847287015121, 7625592702019, 68630363015977, 617673353237227, 5559060437415361, 50031544711579219, 450283904728735897, 4052555149532191867
Offset: 0
-
Table[3^(2n+1) - 3^(n+1) + 1, {n, 0, 30}]
LinearRecurrence[{13,-39,27},{1,19,217},30] (* Harvey P. Dale, Mar 17 2013 *)
-
Vec((1 + 3*x)^2/((1 - x)*(1 - 3*x)*(1 - 9*x)) + O(x^30)) \\ Michel Marcus, Feb 12 2015
A220979
a(n) = 5^(4n+2) - 5^(3n+2) + 3 * 5^(2n+1) - 5^(n+1) + 1: the left Aurifeuillian factor of 5^(10n+5) - 1.
Original entry on oeis.org
11, 12851, 9384251, 6054921251, 3808599606251, 2383422998031251, 1490020755615156251, 931310653778075781251, 582075119020843503906251, 363797694444713592519531251, 227373652160169124603222656251, 142108544241637027263641113281251
Offset: 0
-
Table[5^(4n+2) - 5^(3n+2) + 3 * 5^(2n+1) - 5^(n+1) + 1, {n, 0, 30}]
-
a(n)=5^(4*n+2)-5^(3*n+2)+3*5^(2*n+1)-5^(n+1)+1 \\ Charles R Greathouse IV, Sep 28 2015
A220990
a(n) = 12^(2n+1) + 6 * 12^n + 1: the right Aurifeuillian factor of 12^(6n+3) + 1.
Original entry on oeis.org
19, 1801, 249697, 35842177, 5159904769, 743009863681, 106993223294977, 15407021789577217, 2218611109320327169, 319479999401581608961, 46005119909741205651457, 6624737266953695061344257, 953962166440743626203987969
Offset: 0
-
Table[12^(2n+1) + 6 * 12^n + 1, {n, 0, 10}]
LinearRecurrence[{157,-1884,1728},{19,1801,249697},20] (* Harvey P. Dale, Mar 26 2022 *)
-
a(n)=12^(2*n+1)+6*12^n+1 \\ Charles R Greathouse IV, Sep 28 2015
A092443
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
3, 12, 50, 210, 882, 3696, 15444, 64350, 267410, 1108536, 4585308, 18929092, 78004500, 320932800, 1318498920, 5409723510, 22169259090, 90751353000, 371125269900, 1516311817020, 6189965556060, 25249187564640, 102917884095000, 419218847880300, 1706543186909652
Offset: 1
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
a(3) = 5!/2!2! + 6!/3!3! = 50.
- James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
- Michael De Vlieger, Table of n, a(n) for n = 1..1659
- Sanjay Moudgalya, Abhinav Prem, Rahul Nandkishore, Nicolas Regnault, and B. Andrei Bernevig, Thermalization and its absence within Krylov subspaces of a constrained Hamiltonian, arXiv:1910.14048 [cond-mat.str-el], 2019.
- James Propp, Publications and Preprints.
- James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics, Cambridge University Press, Cambridge, 1999, pp. 255-291.
- Eric Rowland and Jason Wu, The entries of the Sinkhorn limit of an m X n matrix, arXiv:2409.02789 [math.NT], 2024. See p. 11.
-
Array[Binomial[2 # + 1, # + 1] &[# - 1]*(# + 2) &, 22] (* Michael De Vlieger, Dec 17 2017 *)
-
combinat::catalan(n) *binomial(n+2,2) $ n = 1..22 // Zerinvary Lajos, Feb 15 2007
-
a(n) = (n+2)*binomial(2*n-1, n); \\ Altug Alkan, Dec 17 2017
A220983
The left Aurifeuillian factor of 7^(14n+7) + 1.
Original entry on oeis.org
113, 34925927, 4651514210561, 556919483179733591, 65684998500756890925713, 7730533744900130305342957127, 909535949164303794596648514307361, 107006774488854204226839526889653524791, 12589253114717671385404089651370543317211313
Offset: 0
A220984
The right Aurifeuillian factor of 7^(14n+7) + 1.
Original entry on oeis.org
911, 46489241, 4845303761663, 560176314330212777, 65739735996793498937711, 7731453717973685046293120441, 909551411151743369070229385367263, 107007034358477098527617255914118283977, 12589257482346423369016062830670344414194511
Offset: 0
A224195
Ordered sequence of numbers of form (2^n - 1)*2^m + 1 where n >= 1, m >= 1.
Original entry on oeis.org
3, 5, 7, 9, 13, 15, 17, 25, 29, 31, 33, 49, 57, 61, 63, 65, 97, 113, 121, 125, 127, 129, 193, 225, 241, 249, 253, 255, 257, 385, 449, 481, 497, 505, 509, 511, 513, 769, 897, 961, 993, 1009, 1017, 1021, 1023, 1025, 1537, 1793, 1921, 1985, 2017, 2033, 2041, 2045, 2047
Offset: 1
Using the lexicographic ordering of A057555 the sequence is:
A(n) = Table(i,j) with (i,j)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)...
+1 | 2 4 8 16 32 64 128 256 512 1024 ...
----|-----------------------------------------------------------------
1 | 3 5 9 17 33 65 129 257 513 1025
3 | 7 13 25 49 97 193 385 769 1537 3073
7 | 15 29 57 113 225 449 897 1793 3585 7169
15 | 31 61 121 241 481 961 1921 3841 7681 15361
31 | 63 125 249 497 993 1985 3969 7937 15873 31745
63 | 127 253 505 1009 2017 4033 8065 16129 32257 64513
127 | 255 509 1017 2033 4065 8129 16257 32513 65025 130049
255 | 511 1021 2041 4081 8161 16321 32641 65281 130561 261121
511 | 1023 2045 4089 8177 16353 32705 65409 130817 261633 523265
1023| 2047 4093 8185 16369 32737 65473 130945 261889 523777 1047553
...
-
//program generates values in a table form
for i:=1 to 10 do
m:=2^i - 1;
m,[ m*2^n +1 : n in [1..10]];
end for;
//program generates sequence in lexicographic ordering of A057555, read
//along antidiagonals from top. Primes in the sequence are marked with *.
for i:=2 to 18 do
for j:=1 to i-1 do
m:=2^j -1;
k:=m*2^(i-j) + 1;
if IsPrime(k) then k,"*";
else k;
end if;;
end for;
end for;
-
Table[(2^j-1)*2^(i-j+1) + 1, {i, 10}, {j, i}] (* Paolo Xausa, Apr 02 2024 *)
A229767
Largest prime factor of 2^(2*n+1)-2^(n+1)+1.
Original entry on oeis.org
5, 5, 113, 37, 397, 1613, 61, 953, 457, 14449, 30269, 8101, 246241, 107367629, 384773, 312709, 47392381, 184481113, 1249, 12112549, 1759217765581, 54001, 140737471578113, 4981857697937, 26317, 1801439824104653, 415878438361, 525313, 174877, 368140581013
Offset: 1
For n=5, 2^(2*n+1)-2^(n+1)+1 = 1985 = 5*397, so a(5)=397.
Showing 1-10 of 28 results.
Comments