A092440
a(n) = 2^(2n+1) - 2^(n+1) + 1.
Original entry on oeis.org
1, 5, 25, 113, 481, 1985, 8065, 32513, 130561, 523265, 2095105, 8384513, 33546241, 134201345, 536838145, 2147418113, 8589803521, 34359476225, 137438429185, 549754765313, 2199021158401, 8796088827905, 35184363700225
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Robert Price, Table of n, a(n) for n = 0..500
- J. Propp, Publications and Preprints
- J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
A092437
Triangle read by rows, arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 6, 6, 1, 1, 5, 13, 26, 30, 20, 1, 1, 5, 13, 41, 90, 140, 140, 70, 1, 1, 5, 13, 41, 121, 302, 560, 742, 630, 252
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
Triangle begins:
1;
1, 1, 2;
1, 1, 5, 6, 6;
1, 1, 5, 13, 26, 30, 20;
...
- James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
A092438
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
0, 2, 6, 26, 90, 302, 966, 3026, 9330, 28502, 86526, 261626, 788970, 2375102, 7141686, 21457826, 64439010, 193448102, 580606446, 1742343626, 5228079450, 15686335502, 47063200806, 141197991026, 423610750290, 1270865805302
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
a(3) = (3^4+(-1)^4)/2-2^4+1 = 26.
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
A092439
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
0, 0, 6, 30, 140, 560, 2058, 7098, 23472, 75372, 237182, 735878, 2260596, 6896136, 20933778, 63325170, 191089112, 575626052, 1731858246, 5206059774, 15640198620, 46966732320, 140996664986, 423191320490, 1269993390720
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
a(3) = (3^5+(-1)^5)/2 - 2^5 - 5*(2^4-1) + 4^2 = 30.
- James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
- James Propp, Publications and Preprints
- James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Index entries for linear recurrences with constant coefficients, signature (9,-30,42,-9,-39,40,-12).
-
Table[(3^(n+2)+(-1)^(n+2))/2-2^(n+2)-(n+2)(2^(n+1)-1)+(n+1)^2,{n,0,30}] (* or *) LinearRecurrence[{9,-30,42,-9,-39,40,-12},{0,0,6,30,140,560,2058},30] (* Harvey P. Dale, Nov 27 2011 *)
A092441
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
1, 10, 65, 346, 1637, 7218, 30529, 126034, 513125, 2072698, 8335505, 33439914, 133972165, 536346850, 2146369793, 8587575586, 34354757957, 137428468074, 549733794193, 2198977118650, 8795996553701, 35184170762770
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
a(3) = 2^9-2^5-10(2^4-1)+4^2 = 346.
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
- J. Propp, Publications and Preprints
- J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Index entries for linear recurrences with constant coefficients, signature (11,-47,101,-116,68,-16).
-
LinearRecurrence[{11,-47,101,-116,68,-16},{1,10,65,346,1637,7218},30] (* Harvey P. Dale, Nov 26 2022 *)
A092442
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
0, 1, 5, 19, 59, 161, 405, 967, 2231, 5029, 11153, 24443, 53091, 114505, 245549, 524047, 1113839, 2358989, 4980393, 10485379, 22019675, 46136881, 96468485, 201326039, 419429799, 872414581, 1811938625, 3758095627, 7784627411
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
A375177
a(n) = 1/(n + 1)^2 * Sum_{k = 1..n+1} (k^4)*binomial(n+1, k)^2.
Original entry on oeis.org
1, 5, 26, 134, 670, 3262, 15540, 72732, 335478, 1528670, 6894316, 30820660, 136736236, 602610764, 2640266600, 11508115320, 49928451750, 215717144670, 928515985980, 3983029119300, 17032882625220, 72631992447300, 308911087394520, 1310670689270280, 5548646191175100
Offset: 1
-
seq( 1/(n+1)^2 *add( (k^4)*binomial(n+1, k)^2, k = 1..n+1), n = 0..25);
# faster program for large n
a := proc (n) option remember; if n = 0 then 1 else (4*n-6)*(n^3+4*n^2+2*n-2)*a(n-1)/(n*(n^3+n^2-3*n-1)) end if; end:
seq(a(n), n = 0..25);
Showing 1-7 of 7 results.
Comments