cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A092440 a(n) = 2^(2n+1) - 2^(n+1) + 1.

Original entry on oeis.org

1, 5, 25, 113, 481, 1985, 8065, 32513, 130561, 523265, 2095105, 8384513, 33546241, 134201345, 536838145, 2147418113, 8589803521, 34359476225, 137438429185, 549754765313, 2199021158401, 8796088827905, 35184363700225
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004

Keywords

Comments

Arises from enumeration of domino tilings of Aztec Pillow-like regions.
Each beginning with 1, the subsequences of A046899 are 1; 1,2; 1,3,6; 1,4,10,20 and so forth. Create triangles with the sides being equal to each of these subsequences; the interior members T(i,j)=T(i-1,j-1) + T(i-1,j). The sum of all members for each triangle will reproduce the terms of this sequence. Example using the fourth subsequence 1,4,10,20 will give row(1)=1; row(2)=4,4; row(3)=10,8,10; row(4)=20,18,18,20 giving a sum for all members of 113, the fourth term in the sequence. - J. M. Bergot, Oct 17 2012
Also, the number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 510", based on the 5-celled von Neumann neighborhood. - Robert Price, May 04 2016
Let M be some square matrix of rank 2^n, containing the positive real value X everywhere except on the diagonal; let Y be some complex value with phase 3*Pi/4 everywhere else (thus all coefficients on the diagonal). Then, for M to be a unitary matrix, X must be 1/sqrt(a(n)). - Thomas Baruchel, Aug 10 2020

References

  • J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

Formula

a(n) = 2^(2n+1) - 2^(n+1) + 1.
From Colin Barker, Nov 22 2012: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3).
G.f.: -(4*x^2-2*x+1)/((x-1)*(2*x-1)*(4*x-1)). (End)
a(n) = A000225(n)^2 + (A000225(n) + 1)^2. - César Aguilera, May 28 2023

A092443 Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.

Original entry on oeis.org

3, 12, 50, 210, 882, 3696, 15444, 64350, 267410, 1108536, 4585308, 18929092, 78004500, 320932800, 1318498920, 5409723510, 22169259090, 90751353000, 371125269900, 1516311817020, 6189965556060, 25249187564640, 102917884095000, 419218847880300, 1706543186909652
Offset: 1

Views

Author

Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004

Keywords

Comments

The sequence 1, 3, 12, 50, ... is ((n+2)/2)*C(2n,n) with g.f. F(1/2,3;2;4x). - Paul Barry, Sep 18 2008

Examples

			a(3) = 5!/2!2! + 6!/3!3! = 50.
		

References

  • James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).

Crossrefs

Programs

  • Mathematica
    Array[Binomial[2 # + 1, # + 1] &[# - 1]*(# + 2) &, 22] (* Michael De Vlieger, Dec 17 2017 *)
  • MuPAD
    combinat::catalan(n) *binomial(n+2,2) $ n = 1..22 // Zerinvary Lajos, Feb 15 2007
    
  • PARI
    a(n) = (n+2)*binomial(2*n-1, n); \\ Altug Alkan, Dec 17 2017

Formula

a(n) = (2*n-1)!/((n-1)!)^2+(2*n)!/(n!)^2 = A002457(n-1) + A000984(n).
a(n) = (n+2)*A001700(n-1). - Vladeta Jovovic, Jul 12 2004
n*a(n) + (-7*n+4)*a(n-1) + 6*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
From Amiram Eldar, Jan 27 2024: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi*(11*sqrt(3)-3*Pi)/9 - 13.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(phi)*(13*sqrt(5)-30*log(phi))/5 - 11, where phi is the golden ratio (A001622). (End)
From Peter Bala, Aug 02 2024: (Start)
a(n) = 1/(n + 1)^2 * Sum_{k = 1..n+1} (k^3)*binomial(n+1, k)^2 = hypergeom([2, -n, -n], [1, 1], 1).
a(n) = 2*(n + 2)*(2*n - 1)/(n*(n + 1)) * a(n-1) with a(1) = 3. (End)
Showing 1-2 of 2 results.