A092440
a(n) = 2^(2n+1) - 2^(n+1) + 1.
Original entry on oeis.org
1, 5, 25, 113, 481, 1985, 8065, 32513, 130561, 523265, 2095105, 8384513, 33546241, 134201345, 536838145, 2147418113, 8589803521, 34359476225, 137438429185, 549754765313, 2199021158401, 8796088827905, 35184363700225
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Robert Price, Table of n, a(n) for n = 0..500
- J. Propp, Publications and Preprints
- J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
A092443
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
3, 12, 50, 210, 882, 3696, 15444, 64350, 267410, 1108536, 4585308, 18929092, 78004500, 320932800, 1318498920, 5409723510, 22169259090, 90751353000, 371125269900, 1516311817020, 6189965556060, 25249187564640, 102917884095000, 419218847880300, 1706543186909652
Offset: 1
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
a(3) = 5!/2!2! + 6!/3!3! = 50.
- James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
- Michael De Vlieger, Table of n, a(n) for n = 1..1659
- Sanjay Moudgalya, Abhinav Prem, Rahul Nandkishore, Nicolas Regnault, and B. Andrei Bernevig, Thermalization and its absence within Krylov subspaces of a constrained Hamiltonian, arXiv:1910.14048 [cond-mat.str-el], 2019.
- James Propp, Publications and Preprints.
- James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics, Cambridge University Press, Cambridge, 1999, pp. 255-291.
- Eric Rowland and Jason Wu, The entries of the Sinkhorn limit of an m X n matrix, arXiv:2409.02789 [math.NT], 2024. See p. 11.
-
Array[Binomial[2 # + 1, # + 1] &[# - 1]*(# + 2) &, 22] (* Michael De Vlieger, Dec 17 2017 *)
-
combinat::catalan(n) *binomial(n+2,2) $ n = 1..22 // Zerinvary Lajos, Feb 15 2007
-
a(n) = (n+2)*binomial(2*n-1, n); \\ Altug Alkan, Dec 17 2017
A092437
Triangle read by rows, arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 6, 6, 1, 1, 5, 13, 26, 30, 20, 1, 1, 5, 13, 41, 90, 140, 140, 70, 1, 1, 5, 13, 41, 121, 302, 560, 742, 630, 252
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
Triangle begins:
1;
1, 1, 2;
1, 1, 5, 6, 6;
1, 1, 5, 13, 26, 30, 20;
...
- James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
Showing 1-3 of 3 results.
Comments