cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A220983 The left Aurifeuillian factor of 7^(14n+7) + 1.

Original entry on oeis.org

113, 34925927, 4651514210561, 556919483179733591, 65684998500756890925713, 7730533744900130305342957127, 909535949164303794596648514307361, 107006774488854204226839526889653524791, 12589253114717671385404089651370543317211313
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220984.

Crossrefs

Programs

  • Mathematica
    Table[7^(6n+3) - 7^(5n+3) + 3 * 7^(4n+2) - 7^(3n+2) + 3 * 7^(2n+1) - 7^(n+1) + 1, {n, 0, 20}]

Formula

a(n) = 7^(6n+3) - 7^(5n+3) + 3 * 7^(4n+2) - 7^(3n+2) + 3 * 7^(2n+1) - 7^(n+1) + 1.
Aurifeuillian factorization: 7^(14n+7) + 1 = (7^(2n+1) + 1) * a(n) * A220984(n).
G.f.: -(184010736563880737*x^6 +268740854387875086*x^5 +14564007567924591*x^4 +73553506117028*x^3 +123792021759*x^2 +19415886*x +113) / ((x -1)*(7*x -1)*(49*x -1)*(343*x -1)*(2401*x -1)*(16807*x -1)*(117649*x -1)). [Colin Barker, Jan 04 2013]

A230376 The left Aurifeuillian factor of k^k - 1 for k congruent to 1 (mod 4) and squarefree.

Original entry on oeis.org

11, 1803647, 2699538733, 30778903, 112663560435723374699, 554945667652531, 6243610407478181159725577611, 67643278270835231300426724641533, 253382315888712050791030544452181354268272663, 14710826638296122001733445931451
Offset: 1

Views

Author

Colin Barker, Oct 17 2013

Keywords

Comments

The values of k are given by A005117, except for the leading 1.
Named after the French mathematician Léon-François-Antoine Aurifeuille (1822-1882). - Bernard Schott, Apr 13 2022

Examples

			1803647 is in the sequence because it is an Aurifeuillian factor of 13^13-1.
		

Crossrefs

A230377 The left Aurifeuillian factor of k^k + 1 for k congruent to 0, 2 or 3 (mod 4) and squarefree.

Original entry on oeis.org

1, 1, 13, 113, 3541, 58367, 2826601, 19231, 113631466919, 9617835527609, 348275601426959, 35522826680397941, 241498479121, 8403855868042458448127, 1161044975606998832441701, 1272844589592126671, 10128165505710094110937686497, 4612290807753604561
Offset: 1

Views

Author

Colin Barker, Oct 17 2013

Keywords

Comments

The values of k are given by A230375.
Named after the French mathematician Léon-François-Antoine Aurifeuille (1822-1882). - Bernard Schott, Apr 25 2022

Examples

			58367 is in the sequence because it is an Aurifeuillian factor of 11^11+1.
		

Crossrefs

A230378 The right Aurifeuillian factor of k^k - 1 for k congruent to 1 (mod 4) and squarefree.

Original entry on oeis.org

71, 13993643, 19152352117, 227633407, 813955076015309926319, 4098986195943739, 46959719470144429555105032871, 491873569944394295636860313807677, 1848593595048531176470116001230356265643249547, 108685909290746311448943506365699
Offset: 1

Views

Author

Colin Barker, Oct 17 2013

Keywords

Comments

The values of k are given by A005117, except for the leading 1.

Examples

			13993643 is in the sequence because it is an Aurifeuillian factor of 13^13-1.
		

Crossrefs

A220986 The right Aurifeuillian factor of 10^(20n + 10) + 1.

Original entry on oeis.org

27961, 1105207205101, 101005020070200501001, 10010005002000700200050010001, 1000100005000200007000200005000100001, 100001000005000020000070000200000500001000001, 10000010000005000002000000700000200000050000010000001
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220985.

Crossrefs

Programs

  • Mathematica
    a[n_] := 10^(8n + 4) + 10^(7n + 4) + 5 * 10^(6n + 3) + 2 * 10^(5n + 3) + 7 * 10^(4n + 2) + 2 * 10^(3n + 2) + 5 * 10^(2n + 1) + 10^(n + 1) + 1

Formula

a(n) = 10^(8n + 4) + 10^(7n + 4) + 5 * 10^(6n + 3) + 2 * 10^(5n + 3) + 7 * 10^(4n + 2) + 2 * 10^(3n + 2) + 5 * 10^(2n + 1) + 10^(n + 1) + 1
Aurifeuillian factorization: 10^(20n + 10) + 1 = (10^(4n + 2) + 1) * A220985(n) * a(n)
Showing 1-5 of 5 results.