A119259
Central terms of the triangle in A119258.
Original entry on oeis.org
1, 3, 17, 111, 769, 5503, 40193, 297727, 2228225, 16807935, 127574017, 973168639, 7454392321, 57298911231, 441739706369, 3414246490111, 26447737520129, 205272288591871, 1595964714385409, 12427568655368191, 96905907580960769, 756583504975757311, 5913649000782757889
Offset: 0
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Cf.
A005408,
A056220,
A000225,
A000337,
A055580,
A027608,
A119258,
A064062,
A178792,
A014300,
A098665.
-
a119259 n = a119258 (2 * n) n -- Reinhard Zumkeller, Aug 06 2014
-
Table[Binomial[2k - 1, k] Hypergeometric2F1[-2k, -k, 1 - 2k, -1], {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
-
from itertools import count, islice
def A119259_gen(): # generator of terms
yield from (1,3)
a, c = 2, 1
for n in count(1):
yield (a<>1
A119259_list = list(islice(A119259_gen(),20)) # Chai Wah Wu, Apr 26 2023
A116881
Row sums of triangle A116880 (generalized Catalan C(1,2)).
Original entry on oeis.org
1, 4, 23, 150, 1037, 7408, 54035, 399850, 2990105, 22540260, 170991647, 1303789534, 9983164453, 76711854040, 591236890667, 4568611684306, 35382196437041, 274564234870732, 2134337640202295, 16617270658727878
Offset: 0
-
CoefficientList[Series[(32 x^2 + 12 Sqrt[1 - 8 x] x - 4 x) / (-32 x^3 + Sqrt[1 - 8 x] (8 x^2 + 7 x - 1) - 36 x^2 - 3 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 23 2014 *)
-
a(n):=sum(((k+1)^2*binomial(2*(n+1),n-k)*binomial(n+k+2,n+1))/((n+k+1)*(n+k+2)),k,0,n); /* Vladimir Kruchinin, Nov 23 2014 */
A383326
a(n) = Sum_{k=0..n} binomial(3*n+1,k) * binomial(3*n-k,n-k).
Original entry on oeis.org
1, 7, 71, 799, 9439, 114687, 1419263, 17791487, 225172991, 2870945791, 36819740671, 474470776831, 6138443497471, 79681448443903, 1037278449106943, 13536444411412479, 177030837540093951, 2319618918724403199, 30444928900076666879, 400189735705069486079, 5267487129636270243839
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+1, k)*binomial(3*n-k, n-k));
A383716
a(n) = Sum_{k=0..n} binomial(4*n+1,k) * binomial(4*n-k,n-k).
Original entry on oeis.org
1, 9, 127, 2001, 33151, 565249, 9819391, 172826369, 3071424511, 54992986113, 990477877247, 17925526679553, 325710362673151, 5938147061596161, 108571788661555199, 1990032340043366401, 36554697970011340799, 672749920475758460929, 12402180156683794251775
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*n+1, k)*binomial(4*n-k, n-k));
A359066
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,k)*binomial(n-1-k,floor((n-1)/2) - k).
Original entry on oeis.org
1, 1, 5, 7, 31, 49, 209, 351, 1471, 2561, 10625, 18943, 78079, 141569, 580865, 1066495, 4361215, 8085505, 32978945, 61616127, 250806271, 471556097, 1916280833, 3621830655, 14698053631, 27902803969, 113104519169, 215530668031, 872801042431, 1668644405249, 6751535300609
Offset: 1
For n = 3, the a(3) = 5 admissible pinnacle sets in S_3^B are {}, {-1}, {1}, {2}, {3}.
-
a := n -> add(binomial(n, k)*binomial(n-1-k, iquo(n-1, 2) - k), k = 0..iquo(n-1,2)):
# Alternative:
a := n -> binomial(n-1, floor((n-1)/2))*hypergeom([-n, ceil((1-n)/2)], [1-n], -1);
seq(simplify(a(n)), n=3..31); # Peter Luschny, Jan 03 2023
-
Array[Sum[Binomial[#, k]*Binomial[# - 1 - k, Floor[(# - 1)/2] - k], {k, 0, Floor[(# - 1)/2]}] &, 31] (* Michael De Vlieger, Jan 03 2023 *)
-
a(n) = sum(k=0, (n-1)\2, binomial(n,k)*binomial(n-1-k, (n-1)\2 - k)) \\ Andrew Howroyd, Jan 02 2023
A240721
Expansion of -(4*x + sqrt(1-8*x) - 1)/(sqrt(1-8*x)*(4*x^2+x) + 8*x^2 - x).
Original entry on oeis.org
1, 7, 49, 351, 2561, 18943, 141569, 1066495, 8085505, 61616127, 471556097, 3621830655, 27902803969, 215530668031, 1668644405249, 12944666918911, 100598145875969, 783027553697791, 6103529011806209, 47636654222999551, 372225072921837569, 2911581699143892991
Offset: 0
-
a := n -> binomial(2*n+2,n)*hypergeom([-n, n+2], [n+3],-1);
seq(round(evalf(a(n), 32)), n=0..19); # Peter Luschny, Jul 16 2014
-
CoefficientList[Series[-(4 x + Sqrt[1 - 8 x] - 1)/(Sqrt[1 - 8 x] (4 x^2 + x) + 8 x^2 - x), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 12 2014 *)
-
a(n) := sum((k+1)*binomial(2*(n+1), n-k)*binomial(n+k+1,n), k, 0, n)/(n+1);
-
a[0]:1$ a[1]:7$ a[2]:49$ a[n] := 8*sum(a[k]*a[n-3-k], k, 0, n-3)+7*sum(a[k]*a[n-2-k], k, 0, n-2)-sum(a[k]*a[n-1-k], k, 0, n-1)+8*a[n-1]$ makelist(a[n], n, 0, 1000); /* Tani Akinari, Jul 16 2014 */
-
x='x+O('x^50); Vec(-(4*x+sqrt(1-8*x)-1)/(sqrt(1-8*x)*(4*x^2+x)+8*x^2-x)) \\ G. C. Greubel, Apr 05 2017
A359067
a(2*n) = Sum_{k=0..n-1} binomial(2*n,k) binomial(2*n-1-k, n-1-k). a(2*n+1) = (Sum_{k=0..n} binomial(2*n+1,k) binomial(2*n-k, n-k)) - binomial(2*n-1, n).
Original entry on oeis.org
0, 1, 4, 7, 28, 49, 199, 351, 1436, 2561, 10499, 18943, 77617, 141569, 579149, 1066495, 4354780, 8085505, 32954635, 61616127, 250713893, 471556097, 1915928117, 3621830655, 14696701553, 27902803969, 113099318869, 215530668031, 872780984131, 1668644405249, 6751457741849
Offset: 1
For n = 3, the a(3) = 4 admissible pinnacle sets in S_3^D are {}, {1}, {2}, {3}.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO] (2023).
-
a := n -> if irem(n - 1, 2) = 1 then binomial(n, n/2 - 1)*hypergeom([n/2 + 1, -n/2 + 1], [n/2 + 2], -1) else binomial(n + 1, n/2 + 1/2)*hypergeom([n/2 + 1/2, -n/2 + 1/2], [n/2 + 3/2], -1)/2 - binomial(n - 2, n/2 - 1/2) fi:
seq(simplify(a(n)), n = 3..31); # Peter Luschny, Jan 03 2023
A386843
a(n) = Sum_{k=0..n} binomial(2*n+2,k) * binomial(2*n-k,n-k).
Original entry on oeis.org
1, 6, 39, 268, 1905, 13842, 102123, 761880, 5732325, 43417630, 330620895, 2528772132, 19412942809, 149497184298, 1154365194195, 8934458916912, 69291946278861, 538372925816886, 4189702003359687, 32651982699233340, 254800541773725633, 1990683254889381954
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(2*n-k, n-k));
A386898
a(n) = Sum_{k=0..n} binomial(5*n+1,k) * binomial(5*n-k,n-k).
Original entry on oeis.org
1, 11, 199, 4031, 85919, 1885311, 42154111, 955020287, 21847988735, 503573013503, 11675986431999, 272033089535999, 6363380561141759, 149354395882487807, 3515589114309115903, 82957940541503045631, 1961823306198598418431, 46482660516543479939071
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*n+1, k)*binomial(5*n-k, n-k));
A115197
Convolution of generalized Catalan numbers A064062 (called C(n;2)).
Original entry on oeis.org
1, 2, 7, 32, 169, 974, 5947, 37820, 247885, 1662890, 11362399, 78806936, 553386097, 3926523782, 28108587139, 202764451700, 1472446595221, 10755543924578, 78973277044903, 582558618222416, 4315238786662585
Offset: 0
Showing 1-10 of 13 results.
Comments