A064062 Generalized Catalan numbers C(2; n).
1, 1, 3, 13, 67, 381, 2307, 14589, 95235, 636925, 4341763, 30056445, 210731011, 1493303293, 10678370307, 76957679613, 558403682307, 4075996839933, 29909606989827, 220510631755773, 1632599134961667, 12133359132082173
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. Abate and W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011) # 11.2.6, example section 3.
- Jean-Luc Baril, Sergey Kirgizov, and Mehdi Naima, A lattice on Dyck paths close to the Tamari lattice, arXiv:2309.00426 [math.CO], 2023.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From _N. J. A. Sloane_, Oct 08 2012
- J. Bloom and S. Elizalde, Pattern avoidance in matchings and partitions, arXiv:1211.3442 [math.CO] (2012) Theorem 6.1.
- N. Bonichon, C. Gavoille and N. Hanusse, Canonical Decomposition of Outerplanar Maps and Application to Enumeration, Coding and Generation, In Proceedings of WG'03, volume 2880 of LNCS, pp. 81-92, 2003.
- Alexander Burstein, Sergi Elizalde and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006.
- Xiang-Ke Chang, X.-B. Hu, H. Lei and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017).
- Simone Fioravanti, Steve Hanneke, Shay Moran, Hilla Schefler, and Iska Tsubari, Ramsey Theorems for Trees and a General 'Private Learning Implies Online Learning' Theorem, arXiv:2407.07765 [cs.LG], 2024. See p. 44.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
- N. J. A. Sloane, Transforms
- A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011-2012.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (3 - Sqrt(1-8*x))/(2*(1+x)) )); // G. C. Greubel, Sep 27 2024 -
Maple
1, seq(simplify(hypergeom([1-n,n],[-n],2)), n=1..100); # Robert Israel, Nov 30 2014
-
Mathematica
a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + Sum[(a[k] + a[k-1])a[n-k],{k,n-1}]; Table[a[n],{n,0,10}] (* David Callan, Aug 27 2009 *) a[n_] := 2*Sum[ (-1)^j*2^(n-j-1)*Binomial[2*(n-j-1), n-j-1]/(n-j), {j, 0, n-1}] + (-1)^n; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 03 2013 *)
-
PARI
{a(n)=polcoeff((3-sqrt(1-8*x+x*O(x^n)))/(2+2*x),n)}
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^2+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 24 2013 for(n=0, 25, print1(a(n), ", "))
-
PARI
{a(n)=polcoeff(1/(1 - serreverse(x-2*x^2 +x^2*O(x^n))),n)} for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 30 2014
-
Sage
def a(n): if n==0: return 1 return hypergeometric([1-n, n], [-n], 2).simplify() [a(n) for n in range(22)] # Peter Luschny, Dec 01 2014
Formula
G.f.: (1 + 2*x*C(2*x)) / (1+x) = 1/(1 - x*C(2*x)) with C(x) g.f. of Catalan numbers A000108.
a(n) = A062992(n-1) = Sum_{m = 0..n-1} (n-m)*binomial(n-1+m, m)*(2^m)/n, n >= 1, a(0) = 1.
a(n) = Sum_{k = 0..n} A059365(n, k)*2^(n-k). - Philippe Deléham, Jan 19 2004
G.f.: 1/(1-x/(1-2x/(1-2x/(1-2x/(1-.... = 1/(1-x-2x^2/(1-4x-4x^2/(1-4x-4x^2/(1-.... (continued fractions). - Paul Barry, Jan 30 2009
a(n) = (32/Pi)*Integral_{x = 0..1} (8*x)^(n-1)*sqrt(x*(1-x)) / (8*x+1). - Groux Roland, Dec 12 2010
a(n+2) = 8^(n+2)*( c(n+2)-c(1)*c(n+1) - Sum_{i=0..n-1} 8^(-i-2)*c(n-i)*a(i+2) ) with c(n) = Catalan(n+2)/2^(2*n+1). - Groux Roland, Dec 12 2010
a(n) = the upper left term in M^n, M = the production matrix:
1, 1
2, 2, 1
4, 4, 2, 1
8, 8, 4, 2, 1
... - Gary W. Adamson, Jul 08 2011
D-finite with recurrence: n*a(n) + (12-7n)*a(n-1) + 4*(3-2n)*a(n-2) = 0. - R. J. Mathar, Nov 16 2011 (This follows easily from the generating function. - Robert Israel, Nov 30 2014)
G.f. satisfies: A(x) = 1 + A(x)^4 * Integral 1/A(x)^2 dx. - Paul D. Hanna, Dec 24 2013
G.f. satisfies: Integral 1/A(x)^2 dx = x - x^2*G(x), where G(x) is the o.g.f. of A000257, the number of rooted bicubic maps. - Paul D. Hanna, Dec 24 2013
G.f. A(x) satisfies: A(x - 2*x^2) = 1/(1-x). - Paul D. Hanna, Nov 30 2014
a(n) = hypergeometric([1-n, n], [-n], 2) for n > 0. - Peter Luschny, Nov 30 2014
G.f.: (3 - sqrt(1-8*x))/(2*(x+1)). - Robert Israel, Nov 30 2014
a(n) ~ 2^(3*n+1) / (9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 22 2014
O.g.f. A(x) = 1 + series reversion of (x*(1 - x)/(1 + x)^2). Logarithmically differentiating (A(x) - 1)/x gives 3 + 17*x + 111*x^2 + ..., essentially a g.f for A119259. - Peter Bala, Oct 01 2015
From Peter Bala, Jan 06 2022: (Start)
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 6*x^3 + 23*x^4 + ... is a g.f. for A022558.
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
Comments