cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A115195 Triangle of numbers, called Y(1,2), related to generalized Catalan numbers A062992(n) = C(2;n+1) = A064062(n+1).

Original entry on oeis.org

1, 2, 3, 4, 10, 13, 8, 28, 54, 67, 16, 72, 180, 314, 381, 32, 176, 536, 1164, 1926, 2307, 64, 416, 1488, 3816, 7668, 12282, 14589, 128, 960, 3936, 11568, 26904, 51468, 80646, 95235, 256, 2176, 10048, 33184, 86992, 189928, 351220, 541690, 636925, 512, 4864
Offset: 0

Views

Author

Wolfdieter Lang, Feb 23 2006

Keywords

Comments

This triangle Y(1,2) appears in the totally asymmetric exclusion process for the (unphysical) values alpha=1, beta=2. See the Derrida et al. refs. given under A064094, where the triangle entries are called Y_{N,K} for given alpha and beta.
The main diagonal (M=1) gives the generalized Catalan sequence C(2,n+1):=A064062(n+1).
The diagonal sequences give A064062(n+1), 2*A084076, 4*A115194, 8*A115202, 16*A115203, 32*A115204 for n+1>= M=1,..,6.

Examples

			Triangle begins:
   1;
   2,  3;
   4, 10,  13;
   8, 28,  54,  67;
  16, 72, 180, 314, 381;
  ...
		

Crossrefs

Row sums give A084076.

Formula

G.f. m-th diagonal, m>=1: ((1 + 2*x*c(2*x))*(2*x*c(2*x))^m)/(2*x*(1+x)) with c(x) the o.g.f. of A000108 (Catalan).

A138392 Hankel transform of A062992 with interpolated zeros.

Original entry on oeis.org

1, 3, 12, 128, 2048, 81920, 5242880, 805306368, 206158430208, 123145302310912, 126100789566373888, 295147905179352825856, 1208925819614629174706176, 11141460353568422474092118016, 182541686432865033815525261574144
Offset: 0

Views

Author

Paul Barry, Mar 18 2008

Keywords

Programs

  • Maple
    A138392 := proc(n)
        2^(binomial(n+1,2)+0^n-1)*(2+floor((n+1)/2)-0^n) ;
    end proc:
    seq(%(n),n=0..13) ; # R. J. Mathar, Feb 23 2015

Formula

a(n)=2^(comb(n+1,2)+0^n-1)*(2+floor((n+1)/2)-0^n)

A064062 Generalized Catalan numbers C(2; n).

Original entry on oeis.org

1, 1, 3, 13, 67, 381, 2307, 14589, 95235, 636925, 4341763, 30056445, 210731011, 1493303293, 10678370307, 76957679613, 558403682307, 4075996839933, 29909606989827, 220510631755773, 1632599134961667, 12133359132082173
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=2, beta=1 (or alpha=1, beta=2).
a(n) = number of Dyck n-paths (A000108) in which each upstep (U) not at ground level is colored red (R) or blue (B). For example, a(3)=3 counts URDD, UBDD, UDUD (D=downstep). - David Callan, Mar 30 2007
The Hankel transform of this sequence is A002416. - Philippe Deléham, Nov 19 2007
The sequence a(n)/2^n, with g.f. 1/(1-xc(x)/2), has Hankel transform 1/2^n. - Paul Barry, Apr 14 2008
The REVERT transform of the odd numbers [1,3,5,7,9,...] is [1, -3, 13, -67, 381, -2307, 14589, -95235, 636925, ...] - N. J. A. Sloane, May 26 2017

Crossrefs

Generalized Catalan numbers C(m; n): A000012 (m = 0), A000108 (m = 1), A064063 (m = 3) and A064087 - A064093 (m = 4 thru 10); A064310 (m = -1), A064311 (m = -2) and A064325 - A064333 (m = -3 thru -11).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (3 - Sqrt(1-8*x))/(2*(1+x)) )); // G. C. Greubel, Sep 27 2024
  • Maple
    1, seq(simplify(hypergeom([1-n,n],[-n],2)), n=1..100); # Robert Israel, Nov 30 2014
  • Mathematica
    a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + Sum[(a[k] + a[k-1])a[n-k],{k,n-1}]; Table[a[n],{n,0,10}] (* David Callan, Aug 27 2009 *)
    a[n_] := 2*Sum[ (-1)^j*2^(n-j-1)*Binomial[2*(n-j-1), n-j-1]/(n-j), {j, 0, n-1}] + (-1)^n; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 03 2013 *)
  • PARI
    {a(n)=polcoeff((3-sqrt(1-8*x+x*O(x^n)))/(2+2*x),n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^2+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 24 2013
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(1/(1 - serreverse(x-2*x^2 +x^2*O(x^n))),n)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 30 2014
    
  • Sage
    def a(n):
        if n==0: return 1
        return hypergeometric([1-n, n], [-n], 2).simplify()
    [a(n) for n in range(22)] # Peter Luschny, Dec 01 2014
    

Formula

G.f.: (1 + 2*x*C(2*x)) / (1+x) = 1/(1 - x*C(2*x)) with C(x) g.f. of Catalan numbers A000108.
a(n) = A062992(n-1) = Sum_{m = 0..n-1} (n-m)*binomial(n-1+m, m)*(2^m)/n, n >= 1, a(0) = 1.
a(n) = Sum_{k = 0..n} A059365(n, k)*2^(n-k). - Philippe Deléham, Jan 19 2004
G.f.: 1/(1-x/(1-2x/(1-2x/(1-2x/(1-.... = 1/(1-x-2x^2/(1-4x-4x^2/(1-4x-4x^2/(1-.... (continued fractions). - Paul Barry, Jan 30 2009
a(n) = (32/Pi)*Integral_{x = 0..1} (8*x)^(n-1)*sqrt(x*(1-x)) / (8*x+1). - Groux Roland, Dec 12 2010
a(n+2) = 8^(n+2)*( c(n+2)-c(1)*c(n+1) - Sum_{i=0..n-1} 8^(-i-2)*c(n-i)*a(i+2) ) with c(n) = Catalan(n+2)/2^(2*n+1). - Groux Roland, Dec 12 2010
a(n) = the upper left term in M^n, M = the production matrix:
1, 1
2, 2, 1
4, 4, 2, 1
8, 8, 4, 2, 1
... - Gary W. Adamson, Jul 08 2011
D-finite with recurrence: n*a(n) + (12-7n)*a(n-1) + 4*(3-2n)*a(n-2) = 0. - R. J. Mathar, Nov 16 2011 (This follows easily from the generating function. - Robert Israel, Nov 30 2014)
G.f. satisfies: A(x) = 1 + A(x)^4 * Integral 1/A(x)^2 dx. - Paul D. Hanna, Dec 24 2013
G.f. satisfies: Integral 1/A(x)^2 dx = x - x^2*G(x), where G(x) is the o.g.f. of A000257, the number of rooted bicubic maps. - Paul D. Hanna, Dec 24 2013
G.f. A(x) satisfies: A(x - 2*x^2) = 1/(1-x). - Paul D. Hanna, Nov 30 2014
a(n) = hypergeometric([1-n, n], [-n], 2) for n > 0. - Peter Luschny, Nov 30 2014
G.f.: (3 - sqrt(1-8*x))/(2*(x+1)). - Robert Israel, Nov 30 2014
a(n) ~ 2^(3*n+1) / (9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 22 2014
O.g.f. A(x) = 1 + series reversion of (x*(1 - x)/(1 + x)^2). Logarithmically differentiating (A(x) - 1)/x gives 3 + 17*x + 111*x^2 + ..., essentially a g.f for A119259. - Peter Bala, Oct 01 2015
From Peter Bala, Jan 06 2022: (Start)
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 6*x^3 + 23*x^4 + ... is a g.f. for A022558.
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)

A062991 Coefficient triangle for certain polynomials N(2; n,x) (rising powers of x).

Original entry on oeis.org

1, 2, -1, 5, -6, 2, 14, -28, 20, -5, 42, -120, 135, -70, 14, 132, -495, 770, -616, 252, -42, 429, -2002, 4004, -4368, 2730, -924, 132, 1430, -8008, 19656, -27300, 23100, -11880, 3432, -429, 4862, -31824, 92820, -157080, 168300, -116688, 51051, -12870, 1430
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

The g.f. for the sequence of column m of triangle A009766(n,m) (or Catalan A033184(n,n-m) diagonals) is N(2; m-1,x)*(x^m)/(1-x)^(m+1), m >= 1, with N(2; n,x) = Sum_{k=0..n} T(n,k)*x^k.
For k=0..1 the column sequences give A000108(n+1) (Catalan), -A002694. The row sums give A000012 (powers of 1) and (unsigned) A062992.
Another version of [1, 1, 1, 1, 1, 1, 1, 1, ...] DELTA [0, -1, -1, -1, -1, -1, -1, -1, ...] = 1; 1, 0; 2, -1, 0; 5, -6, 2, 0; 14, -28, 20, -5, 0; 42, -120, 135, -70, 14, 0; ... where DELTA is Deléham's operator defined in A084938.
The positive triangle is |T(n,k)| = binomial(2*n+2, n-k)*binomial(n+k, k)/(n+1). - Paul Barry, May 11 2005

Examples

			The triangle N2 = {a(n,k)} begins:
n\k      0       1      2       3       4       5      6       7     8     9
----------------------------------------------------------------------------
0:       1
1:       2      -1
2:       5      -6      2
3:      14     -28     20      -5
4:      42    -120    135     -70      14
5:     132    -495    770    -616     252     -42
6:     429   -2002   4004   -4368    2730    -924    132
7:    1430   -8008  19656  -27300   23100  -11880   3432    -429
8:    4862  -31824  92820 -157080  168300 -116688  51051  -12870  1430
9:   16796 -125970 426360 -852720 1108536 -969969 570570 -217360 48620 -4862
... formatted by _Wolfdieter Lang_, Jan 20 2020
N(2; 2, x)= 5 - 6*x + 2*x^2.
		

Crossrefs

For an unsigned version see Borel's triangle, A234950.
Sums include: A000012 (row), A000079 (diagonal), A064062 (signed row), A071356 (signed diagonal).

Programs

  • Magma
    A062991:= func< n,k | (-1)^k*Binomial(2*n+2,n-k)*Binomial(n+k,k)/(n+1) >;
    [A062991(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2024
    
  • Mathematica
    T[n_, k_] := 2 (-1)^k Binomial[2n+1, n] (n-k+1) Binomial[n+1, k]/((k+n+1)(k+n+2));
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018 *)
  • SageMath
    def A062991(n,k): return (-1)^k*binomial(2*n+2,n-k)*binomial(n+k,k)/(n+1)
    flatten([[A062991(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 27 2024

Formula

T(n, k) = [x^k] N(2; n, x) with N(2; n, x) = (N(2; n-1, x) - A000108(n)*(1-x)^(n+1))/x, N(2; 0, x) = 1.
T(n, k) = T(n-1, k+1) + (-1)^k*binomial(n+1, k+1)*binomial(2*n+1, n)/(2*n+1) if k=0, .., (n-2); T(n, k) = (-1)^k*binomial(n+1, k+1)*binomial(2*n+1, n)/(2*n+1) if k=(n-1) or n; else 0.
O.g.f. (with offset 1) is the series reversion w.r.t. x of x*(1+x*t)/(1+x)^2. If R(n,t) denotes the n-th row polynomial of this triangle then R(n,1-t) is the n-th row polynomial of A009766. Cf. A089434. - Peter Bala, Jul 15 2012
From G. C. Greubel, Sep 27 2024: (Start)
Sum_{k=0..n} T(n, k) = A000012(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A064062(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000079(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A071356(n). (End)

A107111 Number array whose rows are the series reversions of x(1-x)/(1+x)^k, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 13, 22, 14, 1, 5, 23, 67, 90, 42, 1, 6, 36, 156, 381, 394, 132, 1, 7, 52, 305, 1162, 2307, 1806, 429, 1, 8, 71, 530, 2833, 9192, 14589, 8558, 1430, 1, 9, 93, 847, 5919, 27916, 75819, 95235, 41586, 4862, 1, 10, 118, 1272, 11070, 70098, 286632, 644908, 636925, 206098, 16796
Offset: 0

Views

Author

Paul Barry, May 12 2005

Keywords

Comments

First row is the Catalan numbers A000108, second row is the large Schroeder numbers A006318, third row is A062992, fourth row is A007297. As a number triangle, this is T(n,k)=if(k<=n,sum{j=0..k, binomial((n-k)(k+1),k-j)*binomial(k+j,j)}/(k+1),0) with row sums A107112 and diagonal sums A107113.

Examples

			Array begins
1,1,2,5,14,42,132,...
1,2,6,22,90,394,1806,...
1,3,13,67,381,2307,14589,...
1,4,23,156,1162,9192,75819,...
		

Crossrefs

Cf. A366012.

Programs

  • Maple
    A107111 := proc(n,k)
        add(binomial(n*(k+1),k-j)*binomial(k+j,j),j=0..k);
        %/(k+1) ;
    end proc: # R. J. Mathar, Aug 02 2016
  • Mathematica
    T[n_, k_] := Sum[Binomial[n (k + 1), k - j] Binomial[k + j, j], {j, 0, k}]/(k + 1);
    Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2020 *)

Formula

T(n, k)=sum{j=0..k, binomial(n(k+1), k-j)*binomial(k+j, j)}/(k+1)

A234950 Borel's triangle read by rows: T(n,k) = Sum_{s=k..n} binomial(s,k)*C(n,s), where C(n,s) is an entry in Catalan's triangle A009766.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 14, 28, 20, 5, 42, 120, 135, 70, 14, 132, 495, 770, 616, 252, 42, 429, 2002, 4004, 4368, 2730, 924, 132, 1430, 8008, 19656, 27300, 23100, 11880, 3432, 429, 4862, 31824, 92820, 157080, 168300, 116688, 51051, 12870, 1430
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2014

Keywords

Examples

			Triangle begins:
     1,
     2,    1,
     5,    6,     2,
    14,   28,    20,     5,
    42,  120,   135,    70,    14,
   132,  495,   770,   616,   252,    42,
   429, 2002,  4004,  4368,  2730,   924,  132,
  1430, 8008, 19656, 27300, 23100, 11880, 3432, 429,
  ...
		

Crossrefs

A062991 is a signed version. See also A094385 for another version.
Cf. A009766.
The two borders give the Catalan numbers A000108.
Cf. A062992 (row sums).
The second and third columns give A002694 and A244887.

Programs

  • Haskell
    a234950 n k = sum [a007318 s k * a009766 n s | s <- [k..n]]
    a234950_row n = map (a234950 n) [0..n]
    a234950_tabl = map a234950_row [0..]
    -- Reinhard Zumkeller, Jan 12 2014
    
  • Maple
    T := (n,k) -> 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)):
    seq(seq(T(n,k), k=0..n), n=0..8); # Peter Luschny, Sep 04 2018
  • Mathematica
    T[n_, k_] := 2 Binomial[2n+1, n] (n-k+1) Binomial[n+1, k]/((k+n+1)(k+n+2));
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018, from Maple *)
  • PARI
    T(n,k) = sum(s=k, n, binomial(s, k)*binomial(n+s, n)*(n-s+1)/(n+1));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Sep 06 2015

Formula

G.f.: 1/x*(1-sqrt(1-4*x-4*x*y))/(1+2*y+sqrt(1-4*x-4*x*y)). - Vladimir Kruchinin, Sep 04 2018
T(n,k) = 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)). - Peter Luschny, Sep 04 2018

A114191 Expansion of 1/(1+x*c(-2*x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, -1, 3, -13, 67, -381, 2307, -14589, 95235, -636925, 4341763, -30056445, 210731011, -1493303293, 10678370307, -76957679613, 558403682307, -4075996839933, 29909606989827, -220510631755773, 1632599134961667, -12133359132082173, 90485602494971907, -676925762716041213
Offset: 0

Views

Author

Paul Barry, Nov 16 2005

Keywords

Comments

First column of A114189. Row sums of A114193. Alternating sign version of A062992.

Programs

  • Mathematica
    CoefficientList[Series[4/(3+Sqrt[1+8*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

G.f.: 4/(3+sqrt(1+8*x)).
a(n) = Sum_{k=0..n} (-2)^(n-k)*A039599(n, k) = Sum_{k=0..n} (-2)^(n-k)*C(2*n, n-k)*(2*k+1)/(n+k+1). - Philippe Deléham, Nov 17 2005
Conjecture: n*a(n) + (7*n-12)*a(n-1) + 4*(3-2*n)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ (-1)^n * 2^(3*n+1) / (9 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014

A115137 Second diagonal of triangle A113647 (called Y(2,1)).

Original entry on oeis.org

1, 1, 7, 41, 247, 1545, 9975, 66057, 446455, 3067913, 21372919, 150618121, 1071841271, 7691763721, 55600938999, 404488323081, 2959189475319, 21757613309961, 160691417776119, 1191577871450121, 8868160862158839
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Examples

			41=a(3)= A062992(3) - 2*A062992(2) = 67 - 2*13.
		

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x)*(2*(1-Sqrt[1-8*x])/(4*x)-1)/(1+x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)

Formula

a(n)= b(n) - 2*b(n-1) with b(n):=A062992(n)= A064062(n+1), n>=1. a(0):=1.
G.f.: (1-2*x)*(2*c(2*x)-1)/(1+x) with c(x) g.f. of A000108 (Catalan).
a(n)= A113647(n, n), n>=1.
Recurrence: (n-2)*(n+1)*a(n) = (7*n^2-19*n+14)*a(n-1) + 4*(n-1)*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(3*n+2)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012

A115125 A sequence related to Catalan numbers A000108.

Original entry on oeis.org

1, 2, 4, 16, 80, 448, 2688, 16896, 109824, 732160, 4978688, 34398208, 240787456, 1704034304, 12171673600, 87636049920, 635361361920, 4634400522240, 33985603829760, 250420238745600, 1853109766717440, 13765958267043840, 102618961627054080, 767411365211013120
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

Essentially identical to A025225.
The convolution of this sequence with the sequence {(-1)^n} is A064062 (see also A062992).
The sequence A064062 appears in the Derrida et al. 1992 reference (see A064094) for alpha=2, beta=1 (or alpha=1, beta=2).

Crossrefs

Programs

  • Magma
    [1] cat [2^n*Binomial(2*n-2, n-1)/n: n in [1..30]]; // G. C. Greubel, May 03 2018
  • Maple
    a:= n-> `if`(n=0, 1, 2^n*binomial(2*n-2, n-1)/n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 25 2022
  • Mathematica
    a[0] = 1; a[n_] := 2^n*CatalanNumber[n - 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 09 2013 *)
  • PARI
    a(n)=if(n==0,1,polcoeff((1-sqrt(1-8*x+x*O(x^n)))/2,n)); \\ Joerg Arndt, May 14 2013
    

Formula

a(n) = C(n-1)*2^n, n>=1, a(0):=1, with C(n):=A000108(n) (Catalan).
G.f.: 1 + (2*x)*c(2*x) with c(x):=(1-sqrt(1-4*x))/(2*x), the o.g.f. of Catalan numbers A000108.
a(n) = A025225(n), n>0. - R. J. Mathar, Aug 11 2008
G.f.: (3 - sqrt(1-8*x))/2 = 2 - U(0) where U(k)=1 - 2*x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 29 2012
G.f.: 2 - 1/Q(0), where Q(k)= 1 + (8*k+2)*x/(k+1 - x*(2*k+2)*(8*k+6)/(2*x*(8*k+6) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013

A366012 a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(n*(n+1),n-k).

Original entry on oeis.org

1, 2, 13, 156, 2833, 70098, 2214280, 85464984, 3906724321, 206648387550, 12425282899588, 837384222603448, 62539219710804627, 5127758187193514824, 457986530357734020432, 44263628968974498793648, 4602969726808566383149761, 512486177498084438210961270, 60827938291895363867587959628
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1/(n + 1) Sum[Binomial[n + k, n] Binomial[n (n + 1), n - k], {k, 0, n}], {n, 0, 18}]
    Table[SeriesCoefficient[(1/x) InverseSeries[Series[x (1 - x)/(1 + x)^n, {x, 0, n + 1}], x], {x, 0, n}], {n, 0, 18}]

Formula

a(n) = [x^n] (1/x) * Series_Reversion( x * (1 - x) / (1 + x)^n ).
a(n) ~ exp(n + 3/2) * n^(n - 3/2) / sqrt(2*Pi). - Vaclav Kotesovec, Sep 26 2023
Showing 1-10 of 11 results. Next