cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A062992 Row sums of unsigned triangle A062991.

Original entry on oeis.org

1, 3, 13, 67, 381, 2307, 14589, 95235, 636925, 4341763, 30056445, 210731011, 1493303293, 10678370307, 76957679613, 558403682307, 4075996839933, 29909606989827, 220510631755773, 1632599134961667, 12133359132082173
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

a(n) = N(2; n,x=-1), with the polynomials N(2; n,x) defined in A062991.

Crossrefs

Cf. A112707 (c(n, -m) triangle). Here m=2 is used. Row sums of A234950.

Programs

  • Haskell
    a062992 = sum . a234950_row  -- Reinhard Zumkeller, Jan 12 2014
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (1-2*x-Sqrt(1-8*x))/(2*x+2*x^2) )); // G. C. Greubel, Sep 27 2024
  • Mathematica
    Table[2*Sum[(-1)^j*Binomial[2*n-2*j,n-j]/(n-j+1)*2^(n-j), {j,0,n}]-(-1)^n,{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
  • PARI
    a(n)=polcoeff((1-2*x-sqrt(1-8*x+x^2*O(x^n)))/(2*x+2*x^2),n)
    
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x)^2+O(x^(n+2))),n+1)) \\ Ralf Stephan
    
  • Sage
    def a(n): return hypergeometric([-n, n+1], [-n-1], 2)
    [a(n).hypergeometric_simplify() for n in range(21)] # Peter Luschny, Nov 30 2014
    

Formula

a(n) = (-1)^(n+1) + 2*Sum_{j = 0..n} (-1)^j*C(n-j)*2^(n-j) with C(n) := A000108(n) (Catalan).
G.f.: A(x) = (2*c(2*x) - 1)/(1 + x) with c(x) the g.f. of A000108.
a(n) = (1/(n+1)) * Sum_{k = 0..n} binomial(2*n+2, n-k)*binomial(n+k, k). - Paul Barry, May 11 2005
Rewritten: a(n) = (1 - 2*c(n, -2))*(-1)^(n+1), n >= , with c(n, x) := Sum_{k = 0..n} C(k)*x^k and C(k) := A000108(k) (Catalan). - Wolfdieter Lang, Oct 31 2005
Recurrence: (n+1)*a(n) = (7*n-5)*a(n-1) + 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 2^(3*n+4)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012
a(n) = hypergeometric([-n, n+1], [-n-1], 2). - Peter Luschny, Nov 30 2014
G.f.: A(x) = exp( Sum_{n >= 1} A119259(n)*x^n/n ). - Peter Bala, Jun 08 2023

A009766 Catalan's triangle T(n,k) (read by rows): each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 14, 1, 5, 14, 28, 42, 42, 1, 6, 20, 48, 90, 132, 132, 1, 7, 27, 75, 165, 297, 429, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934
Offset: 0

Views

Author

Keywords

Comments

The entries in this triangle (in its many forms) are often called ballot numbers.
T(n,k) = number of standard tableaux of shape (n,k) (n > 0, 0 <= k <= n). Example: T(3,1) = 3 because we have 134/2, 124/3 and 123/4. - Emeric Deutsch, May 18 2004
T(n,k) is the number of full binary trees with n+1 internal nodes and jump-length k. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump; the positive difference of the levels is called the jump distance; the sum of the jump distances in a given ordered tree is called the jump-length. - Emeric Deutsch, Jan 18 2007
The k-th diagonal from the right (k=1, 2, ...) gives the sequence obtained by asking in how many ways can we toss a fair coin until we first get k more heads than tails. The k-th diagonal has formula k(2m+k-1)!/(m!(m+k)!) and g.f. (C(x))^k where C(x) is the generating function for the Catalan numbers, (1-sqrt(1-4*x))/(2*x). - Anthony C Robin, Jul 12 2007
T(n,k) is also the number of order-decreasing and order-preserving full transformations (of an n-element chain) of waist k (waist (alpha) = max(Im(alpha))). - Abdullahi Umar, Aug 25 2008
Formatted as an upper right triangle (see tables) a(c,r) is the number of different triangulated planar polygons with c+2 vertices, with triangle degree c-r+1 for the same vertex X (c=column number, r=row number, with c >= r >= 1). - Patrick Labarque, Jul 28 2010
The triangle sums, see A180662 for their definitions, link Catalan's triangle, its mirror is A033184, with several sequences, see crossrefs. - Johannes W. Meijer, Sep 22 2010
The m-th row of Catalan's triangle consists of the unique nonnegative differences of the form binomial(m+k,m)-binomial(m+k,m+1) with 0 <= k <= m (See Links). - R. J. Cano, Jul 22 2014
T(n,k) is also the number of nondecreasing parking functions of length n+1 whose maximum element is k+1. For example T(3,2) = 5 because we have (1,1,1,3), (1,1,2,3), (1,2,2,3), (1,1,3,3), (1,2,3,3). - Ran Pan, Nov 16 2015
T(n,k) is the number of Dyck paths from (0,0) to (n+2,n+2) which start with n-k+2 east steps and touch the diagonal y=x only on the last north step. - Felipe Rueda, Sep 18 2019
T(n-1,k) for k < n is number of well-formed strings of n parenthesis pairs with prefix of exactly n-k opening parenthesis; T(n,n) = T(n,n-1). - Hermann Stamm-Wilbrandt, May 02 2021

Examples

			Triangle begins in row n=0 with 0 <= k <= n:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  5,   5;
  1, 4,  9,  14,  14;
  1, 5, 14,  28,  42,   42;
  1, 6, 20,  48,  90,  132,  132;
  1, 7, 27,  75, 165,  297,  429,  429;
  1, 8, 35, 110, 275,  572, 1001, 1430, 1430;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862;
		

References

  • William Feller, Introduction to Probability Theory and its Applications, vol. I, ed. 2, chap. 3, sect. 1,2.
  • Ki Hang Kim, Douglas G. Rogers, and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013).
  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6, Eq. 22, p. 451.
  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146.
  • M. Bellon, Query 5467, L'Intermédiaire des Mathématiciens, 4 (1925), 11; H. Ory, 4 (1925), 120. - N. J. A. Sloane, Mar 09 2022
  • Andrzej Proskurowski and Ekaputra Laiman, Fast enumeration, ranking, and unranking of binary trees. Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982). Congr. Numer. 35 (1982), 401-413.MR0725898 (85a:68152).
  • M. Welsch, Note #371, L'Intermédiaire des Mathématiciens, 2 (1895), pp. 235-237. - N. J. A. Sloane, Mar 02 2022

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A008315, A028364, A030237, A047072, A053121, A059365, A062103, A099039, A106566, A130020, A140344.
Sums of the shallow diagonals give A001405, central binomial coefficients: 1=1, 1=1, 1+1=2, 1+2=3, 1+3+2=6, 1+4+5=10, 1+5+9+5=20, ...
Row sums as well as the sums of the squares of the shallow diagonals give Catalan numbers (A000108).
Reflected version of A033184.
Triangle sums (see the comments): A000108 (Row1), A000957 (Row2), A001405 (Kn11), A014495 (Kn12), A194124 (Kn13), A030238 (Kn21), A000984 (Kn4), A000958 (Fi2), A165407 (Ca1), A026726 (Ca4), A081696 (Ze2).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],m->Binomial(n+m,n)*(n-m+1)/(n+1)))); # Muniru A Asiru, Feb 18 2018
    
  • Haskell
    a009766 n k = a009766_tabl !! n !! k
    a009766_row n = a009766_tabl !! n
    a009766_tabl = iterate (\row -> scanl1 (+) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    [[Binomial(n+k,n)*(n-k+1)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
    
  • Maple
    A009766 := proc(n,k) binomial(n+k,n)*(n-k+1)/(n+1); end proc:
    seq(seq(A009766(n,k), k=0..n), n=0..10); # R. J. Mathar, Dec 03 2010
  • Mathematica
    Flatten[NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *)
    T[n_, k_] := T[n, k] = Which[k == 0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1] ]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2016 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n+1+k, k) * (n+1-k) / (n+1+k) )}; /* Michael Somos, Oct 17 2006 */
    
  • PARI
    b009766=(n1=0,n2=100)->{my(q=if(!n1,0,binomial(n1+1,2)));for(w=n1,n2,for(k=0,w,write("b009766.txt",1*q" "1*(binomial(w+k,w)-binomial(w+k,w+1)));q++))} \\ R. J. Cano, Jul 22 2014
    
  • Python
    from math import comb, isqrt
    def A009766(n): return comb((a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))+(b:=n-comb(a+1,2)),b)*(a-b+1)//(a+1) # Chai Wah Wu, Nov 12 2024
  • Sage
    @CachedFunction
    def ballot(p,q):
        if p == 0 and q == 0: return 1
        if p < 0 or p > q: return 0
        S = ballot(p-2, q) + ballot(p, q-2)
        if q % 2 == 1: S += ballot(p-1, q-1)
        return S
    A009766 = lambda n, k: ballot(2*k, 2*n)
    for n in (0..7): [A009766(n, k) for k in (0..n)]  # Peter Luschny, Mar 05 2014
    
  • Sage
    [[binomial(n+k,n)*(n-k+1)/(n+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 07 2019
    

Formula

T(n, m) = binomial(n+m, n)*(n-m+1)/(n+1), 0 <= m <= n.
G.f. for column m: (x^m)*N(2; m-1, x)/(1-x)^(m+1), m >= 0, with the row polynomials from triangle A062991 and N(2; -1, x) := 1.
G.f.: C(t*x)/(1-x*C(t*x)) = 1 + (1+t)*x + (1+2*t+2*t^2)*x^2 + ..., where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function. - Emeric Deutsch, May 18 2004
Another version of triangle T(n, k) given by [1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 1, 1, 1, 1, 1, ...] = 1; 1, 0; 1, 1, 0; 1, 2, 2, 0; 1, 3, 5, 5, 0; 1, 4, 9, 14, 14, 0; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 16 2005
O.g.f. (with offset 1) is the series reversion of x*(1+x*(1-t))/(1+x)^2 = x - x^2*(1+t) + x^3*(1+2*t) - x^4*(1+3*t) + ... . - Peter Bala, Jul 15 2012
Sum_{k=0..floor(n/2)} T(n-k+p-1, k+p-1) = A001405(n+2*p-2) - C(n+2*p-2, p-2), p >= 1. - Johannes W. Meijer, Oct 03 2013
Let A(x,t) denote the o.g.f. Then 1 + x*d/dx(A(x,t))/A(x,t) = 1 + (1 + t)*x + (1 + 2*t + 3*t^2)*x^2 + (1 + 3*t + 6*t^2 + 10*t^3)*x^3 + ... is the o.g.f. for A059481. - Peter Bala, Jul 21 2015
The n-th row polynomial equals the n-th degree Taylor polynomial of the function (1 - 2*x)/(1 - x)^(n+2) about 0. For example, for n = 4, (1 - 2*x)/(1 - x)^6 = 1 + 4*x + 9*x^2 + 14*x^3 + 14*x^4 + O(x^5). - Peter Bala, Feb 18 2018
T(n,k) = binomial(n + k + 1, k) - 2*binomial(n + k, k - 1), for 0 <= k <= n. - David Callan, Jun 15 2022

A088617 Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2003

Keywords

Comments

Row sums: A006318 (Schroeder numbers). Essentially same as triangle A060693 transposed.
T(n,k) is number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U's. E.g., T(2,1)=3 because we have UHD, UDH and HUD. - Emeric Deutsch, Dec 06 2003
Little Schroeder numbers A001003 have a(n) = Sum_{k=0..n} A088617(n,k)*(-1)^(n-k)*2^k. - Paul Barry, May 24 2005
Conjecture: The expected number of U's in a Schroeder n-path is asymptotically Sqrt[1/2]*n for large n. - David Callan, Jul 25 2008
T(n, k) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
The antidiagonals of this lower triangular matrix are the rows of A055151. - Tom Copeland, Jun 17 2015

Examples

			Triangle begins:
  [0] 1;
  [1] 1,  1;
  [2] 1,  3,   2;
  [3] 1,  6,  10,    5;
  [4] 1, 10,  30,   35,    14;
  [5] 1, 15,  70,  140,   126,    42;
  [6] 1, 21, 140,  420,   630,   462,   132;
  [7] 1, 28, 252, 1050,  2310,  2772,  1716,   429;
  [8] 1, 36, 420, 2310,  6930, 12012, 12012,  6435,  1430;
  [9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.

Crossrefs

Programs

  • Magma
    [[Binomial(n+k,n)*Binomial(n,k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
    
  • Maple
    R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
    Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
    seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
  • Mathematica
    Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n,0,10}, {k,0,n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
  • PARI
    {T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
    
  • SageMath
    flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022

Formula

Triangle T(n, k) read by rows; given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = A085478(n, k)*A000108(k); A000108 = Catalan numbers. - Philippe Deléham, Dec 05 2003
Sum_{k=0..n} T(n, k)*x^k*(1-x)^(n-k) = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Aug 18 2005
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Oct 18 2007
O.g.f. (with initial 1 excluded) is the series reversion with respect to x of (1-t*x)*x/(1+x). Cf. A062991 and A089434. - Peter Bala, Jul 31 2012
G.f.: 1 + (1 - x - T(0))/y, where T(k) = 1 - x*(1+y)/( 1 - x*y/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
From Peter Bala, Jul 20 2015: (Start)
O.g.f. A(x,t) = ( 1 - x - sqrt((1 - x)^2 - 4*x*t) )/(2*x*t) = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2 + ....
1 + x*(dA(x,t)/dx)/A(x,t) = 1 + (1 + t)*x + (1 + 4*t + 3*t^2)*x^2 + ... is the o.g.f. for A123160.
For n >= 1, the n-th row polynomial equals (1 + t)/(n+1)*Jacobi_P(n-1,1,1,2*t+1). Removing a factor of 1 + t from the row polynomials gives the row polynomials of A033282. (End)
From Tom Copeland, Jan 22 2016: (Start)
The o.g.f. G(x,t) = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/2x = (t + t^2) x + (t + 3t^2 + 2t^3) x^2 + (t + 6t^2 + 10t^3 + 5t^3) x^3 + ... generating shifted rows of this entry, excluding the first, was given in my 2008 formulas for A033282 with an o.g.f. f1(x,t) = G(x,t)/(1+t) for A033282. Simple transformations presented there of f1(x,t) are related to A060693 and A001263, the Narayana numbers. See also A086810.
The inverse of G(x,t) is essentially given in A033282 by x1, the inverse of f1(x,t): Ginv(x,t) = x [1/(t+x) - 1/(1+t+x)] = [((1+t) - t) / (t(1+t))] x - [((1+t)^2 - t^2) / (t(1+t))^2] x^2 + [((1+t)^3 - t^3) / (t(1+t))^3] x^3 - ... . The coefficients in t of Ginv(xt,t) are the o.g.f.s of the diagonals of the Pascal triangle A007318 with signed rows and an extra initial column of ones. The numerators give the row o.g.f.s of signed A074909.
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, related to A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131 and reversed rows of A055151. The diagonals of A107131 give the columns of A055151. The antidiagonals of A088617 (bottom to top) give the rows of A055151.
(End)
T(n, k) = [x^k] hypergeom([-n, 1 + n], [2], -x). - Peter Luschny, Apr 26 2022

A005587 a(n) = n*(n+5)*(n+6)*(n+7)/24.

Original entry on oeis.org

0, 14, 42, 90, 165, 275, 429, 637, 910, 1260, 1700, 2244, 2907, 3705, 4655, 5775, 7084, 8602, 10350, 12350, 14625, 17199, 20097, 23345, 26970, 31000, 35464, 40392, 45815, 51765, 58275, 65379, 73112, 81510, 90610, 100450, 111069, 122507, 134805, 148005
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of Standard Young Tableaux of shape (n+3,4). - David Callan, Aug 17 2004
a(n) = A214292(n+6,3). - Reinhard Zumkeller, Jul 12 2012
a(n) for n > 0 is the number of n-extended coalescent histories for a matching caterpillar gene tree and species tree with 5 leaves. - Noah A Rosenberg, Jun 16 2022

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Fifth diagonal of Catalan triangle A033184. Fifth column of Catalan triangle A009766.
Numerator polynomial 14 - 28x + 20x^2 - 5x^3 from fourth row of triangle A062991.

Programs

  • Magma
    [n*(n+5)*(n+6)*(n+7)/24: n in [0..40]]; // Vincenzo Librandi, Mar 20 2013
    
  • Maple
    A005587:=z*(-14+28*z-20*z**2+5*z**3)/(z-1)**5; # Simon Plouffe in his 1992 dissertation
    seq(numbperm(n,4)/24-numbperm(n,3)/6, n=7..46); # Zerinvary Lajos, May 20 2008
    a:=n->(sum(numbcomp(n,4), j=9..n)):seq(a(n)/4, n=8..47); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    Table[n (n + 5) (n + 6) (n + 7)/24, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,14,42,90,165},40] (* Harvey P. Dale, Aug 17 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec((14 - 28*x + 20*x^2 - 5*x^3) / (1 - x)^5)) \\ G. C. Greubel, Jul 01 2017

Formula

G.f.: (14 - 28*x + 20*x^2 - 5*x^3) / (1 - x)^5.
a(n) = C(7+n, 4) - C(7+n, 3). - Zerinvary Lajos, Dec 09 2005
E.g.f.: (1/24)*x*(336 + 168*x + 24*x^2 + x^3)*exp(x). - G. C. Greubel, Jul 01 2017
From Amiram Eldar, Jun 28 2022: (Start)
Sum_{n>=1} 1/a(n) = 153/1225.
Sum_{n>=1} (-1)^(n+1)/a(n) = 288*log(2)/35 - 20759/3675. (End)
a(n) = A024191(n+1)-5. - R. J. Mathar, Nov 22 2024

Extensions

M4929 (this sequence) and M4930 were the same.
More terms from Matthew Conroy, Jan 16 2006
Plouffe Maple line edited by N. J. A. Sloane, May 13 2008

A064059 Seventh column of Catalan triangle A009766.

Original entry on oeis.org

132, 429, 1001, 2002, 3640, 6188, 9996, 15504, 23256, 33915, 48279, 67298, 92092, 123970, 164450, 215280, 278460, 356265, 451269, 566370, 704816, 870232, 1066648, 1298528, 1570800, 1888887, 2258739, 2686866, 3180372, 3746990, 4395118, 5133856, 5973044
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Crossrefs

Cf. A000096, A005586, A005587, A005557 (third to sixth column).

Programs

  • Magma
    A064059:= func< n | (n+1)*Binomial(n+12,5)/6 >;
    [A064059(n): n in [0..40]]; // G. C. Greubel, Sep 27 2024
    
  • Maple
    [seq(binomial(n+1,6)-2*binomial(n,5),n=12..55)]; # Zerinvary Lajos, Jul 19 2006
  • Mathematica
    CoefficientList[Series[(42 z^5-252 z^4+616 z^3-770 z^2+495 z-132)/(z-1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{132,429,1001,2002,3640,6188,9996},40] (* Harvey P. Dale, Jan 08 2025 *)
  • SageMath
    def A064059(n): return (n+1)*binomial(n+12,5)//6
    [A064059(n) for n in range(41)] # G. C. Greubel, Sep 27 2024

Formula

G.f.: (132-495*x+770*x^2-616*x^3+252*x^4-42*x^5)/(1-x)^7; numerator polynomial is N(2;5, x) from A062991.
a(n) = A009766(n+6, 6) = (n+1)*binomial(n+12,5)/6.
a(n) = binomial(n+13,6) - 2*binomial(n+12,5). - Zerinvary Lajos, Jul 19 2006
a(n) = A214292(n+11,5). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 25961/2134440.
Sum_{n>=0} (-1)^n/a(n) = 4160*log(2)/77 - 79917773/2134440. (End)

A005557 Number of walks on square lattice.

Original entry on oeis.org

42, 132, 297, 572, 1001, 1638, 2548, 3808, 5508, 7752, 10659, 14364, 19019, 24794, 31878, 40480, 50830, 63180, 77805, 95004, 115101, 138446, 165416, 196416, 231880, 272272, 318087, 369852, 428127, 493506, 566618, 648128, 738738, 839188, 950257, 1072764
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sixth diagonal of Catalan triangle A033184.
Sixth column of Catalan triangle A009766.

Programs

  • GAP
    List([0..30],n->(n+1)*Binomial(n+10,4)/5); # Muniru A Asiru, Apr 10 2018
    
  • Magma
    [(n+1)*Binomial(n+10, 4)/5: n in [0..40]]; // Vincenzo Librandi, Mar 20 2013
    
  • Maple
    [seq(binomial(n,5)-binomial(n,3),n=9..55)]; # Zerinvary Lajos, Jul 19 2006
    A005557:=(42-120*z+135*z**2-70*z**3+14*z**4)#(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(14 z^4 - 70 z^3 + 135 z^2 - 120 z + 42)/(z - 1)^6, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{42,132,297,572,1001,1638},40] (* Harvey P. Dale, Feb 22 2024 *)
  • PARI
    a(n)=(n+1)*binomial(n+10,4)/5 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = A009766(n+5, 5) = (n+1)*binomial(n+10, 4)/5.
G.f.: (42 - 120*x + 135*x^2 - 70*x^3 + 14*x^4)/(1-x)^6; numerator polynomial is N(2;4, x) from A062991.
a(n) = binomial(n+9,5) - binomial(n+9,3). - Zerinvary Lajos, Jul 19 2006
a(n) = A214292(n+9, 4). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 2509/63504.
Sum_{n>=0} (-1)^n/a(n) = 951395/63504 - 1360*log(2)/63. (End)

Extensions

More terms and formula from Wolfdieter Lang, Sep 04 2001

A064061 Eighth column of Catalan triangle A009766.

Original entry on oeis.org

429, 1430, 3432, 7072, 13260, 23256, 38760, 62016, 95931, 144210, 211508, 303600, 427570, 592020, 807300, 1085760, 1442025, 1893294, 2459664, 3164480, 4034712, 5101360, 6399888, 7970688, 9859575, 12118314, 14805180, 17985552, 21732542, 26127660, 31261516
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Crossrefs

Cf. A009766, A064059 (seventh column), A062991, A214292.

Programs

  • Magma
    A064061:= func< n | (n+1)*Binomial(n+14, 6)/7 >;
    [A064061(n): n in [0..40]]; // G. C. Greubel, Sep 28 2024
    
  • Maple
    [seq(binomial(n,7)-binomial(n,5),n=13..37)]; # Zerinvary Lajos, Nov 25 2006
  • Mathematica
    CoefficientList[Series[(132*z^6 - 924*z^5 + 2730*z^4 - 4368*z^3 + 4004*z^2 - 2002*z + 429)/(z - 1)^8, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
    Table[Binomial[n,7]-Binomial[n,5],{n,13,50}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{429,1430,3432,7072,13260,23256,38760,62016},40] (* Harvey P. Dale, Sep 03 2015 *)
  • SageMath
    def A064061(n): return (n+1)*binomial(n+14,6)//7
    [A064061(n) for n in range(41)] # G. C. Greubel, Sep 28 2024

Formula

a(n) = A009766(n+7, 7) = (n+1)*binomial(n+14, 6)/7.
G.f.: (429-2002*x+4004*x^2-4368*x^3+2730* x^4-924*x^5+132*x^6)/(1-x)^8; numerator polynomial is N(2;6, x) from A062991.
a(n) = C(n+13,7) - C(n+13,5). - Zerinvary Lajos, Nov 25 2006
a(n) = A214292(n+13,6). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 323171/88339680.
Sum_{n>=0} (-1)^n/a(n) = 7929257917/88339680 - 55552*log(2)/429. (End)

A094385 Triangle read by rows: T(n, k) = binomial(2*n, k-1)*binomial(2*n-k-1, n-k)/n for n, k >= 1, and T(n, 0) = 0^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 6, 5, 0, 5, 20, 28, 14, 0, 14, 70, 135, 120, 42, 0, 42, 252, 616, 770, 495, 132, 0, 132, 924, 2730, 4368, 4004, 2002, 429, 0, 429, 3432, 11880, 23100, 27300, 19656, 8008, 1430, 0, 1430, 12870, 51051, 116688, 168300, 157080, 92820, 31824, 4862
Offset: 0

Views

Author

Philippe Deléham, Jun 03 2004, Jun 14 2007

Keywords

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,    2;
  0,   2,    6,     5;
  0,   5,   20,    28,    14;
  0,  14,   70,   135,   120,    42;
  0,  42,  252,   616,   770,   495,   132;
  0, 132,  924,  2730,  4368,  4004,  2002,  429;
  0, 429, 3432, 11880, 23100, 27300, 19656, 8008, 1430; ...
		

Crossrefs

Variant of A062991, unsigned and transposed.
See also A234950 for another version.
Columns: A000007 (k=0), 2*A001700 (k=1).
Diagonals: A002694 (k=n-1), A000108 (k=n).
Row sums: A064062 (generalized Catalan C(2; n)).

Programs

  • Magma
    A094385:= func< n,k | n eq 0 select 1 else Binomial(2*n, k-1)*Binomial(2*n-k-1, n-k)/n >;
    [A094385(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 26 2024
    
  • Mathematica
    T[n_, k_] := Binomial[2n, k-1] Binomial[2n-k-1, n-k]/n; T[0, 0] = 1;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018 *)
  • SageMath
    def A094385(n,k): return 1 if (n==0) else binomial(2*n,k-1)*binomial(2*n-k-1, n-k)//n
    flatten([[A094385(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 26 2024

Formula

T is given by [0, 1, 1, 1, 1, 1, 1, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is the operator defined in A084938.
Sum_{k = 0..n} T(n, k)*x^(n-k) = C(x+1; n), generalized Catalan numbers; see left diagonals of triangle A064094: A000012, A000108, A064062, A064063, A064087..A064093 for x = -1, 0, ..., 9, respectively.
From G. C. Greubel, Sep 26 2024: (Start)
T(n, 1) = A000108(n-1), n >= 1.
T(n, n-1) = A002694(n), n >= 1.
T(n, n) = A000108(n). (End)

Extensions

New name using a formula of the author by Peter Luschny, Sep 26 2024

A234950 Borel's triangle read by rows: T(n,k) = Sum_{s=k..n} binomial(s,k)*C(n,s), where C(n,s) is an entry in Catalan's triangle A009766.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 14, 28, 20, 5, 42, 120, 135, 70, 14, 132, 495, 770, 616, 252, 42, 429, 2002, 4004, 4368, 2730, 924, 132, 1430, 8008, 19656, 27300, 23100, 11880, 3432, 429, 4862, 31824, 92820, 157080, 168300, 116688, 51051, 12870, 1430
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2014

Keywords

Examples

			Triangle begins:
     1,
     2,    1,
     5,    6,     2,
    14,   28,    20,     5,
    42,  120,   135,    70,    14,
   132,  495,   770,   616,   252,    42,
   429, 2002,  4004,  4368,  2730,   924,  132,
  1430, 8008, 19656, 27300, 23100, 11880, 3432, 429,
  ...
		

Crossrefs

A062991 is a signed version. See also A094385 for another version.
Cf. A009766.
The two borders give the Catalan numbers A000108.
Cf. A062992 (row sums).
The second and third columns give A002694 and A244887.

Programs

  • Haskell
    a234950 n k = sum [a007318 s k * a009766 n s | s <- [k..n]]
    a234950_row n = map (a234950 n) [0..n]
    a234950_tabl = map a234950_row [0..]
    -- Reinhard Zumkeller, Jan 12 2014
    
  • Maple
    T := (n,k) -> 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)):
    seq(seq(T(n,k), k=0..n), n=0..8); # Peter Luschny, Sep 04 2018
  • Mathematica
    T[n_, k_] := 2 Binomial[2n+1, n] (n-k+1) Binomial[n+1, k]/((k+n+1)(k+n+2));
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018, from Maple *)
  • PARI
    T(n,k) = sum(s=k, n, binomial(s, k)*binomial(n+s, n)*(n-s+1)/(n+1));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Sep 06 2015

Formula

G.f.: 1/x*(1-sqrt(1-4*x-4*x*y))/(1+2*y+sqrt(1-4*x-4*x*y)). - Vladimir Kruchinin, Sep 04 2018
T(n,k) = 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)). - Peter Luschny, Sep 04 2018

A062746 Coefficient array for certain polynomials N(3; k,x) (rising powers of x).

Original entry on oeis.org

1, 3, -3, 1, 12, -29, 30, -15, 3, 55, -222, 405, -417, 252, -84, 12, 273, -1575, 4203, -6678, 6846, -4608, 1980, -495, 55, 1428, -10812, 38367, -83244, 121518, -124146, 89595, -44990, 15015, -3003, 273, 7752, -73017, 325164
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

The g.f. for the sequence of column r=2*k+1, k >= 0, of array A062745(n,r) is N(3; k,x)*(x^(k+1))/(1-x)^(2*k+2) with N(3; k,x) := sum(a(k,p)*x^p,p=0..2*k).
The m=0 column gives: A001764(n+1). The row sums give A000012 (powers of 1) and (unsigned) A062747.
The sequence of step width of this staircase array is [1,2,2,2,...], i.e. the degree of the row polynomials is [0,2,4,6,...]= A005843.

Examples

			{1}; {3,-3,1}; {12,-29,30,-15,3}; ...; N(3; 1,x)= 3-3*x+x^2.
		

Crossrefs

Cf. A062991.

Formula

a(k, p) := [x^p]N(3; k, x) with N(3; k, x)=(N(3; k-1, x)-A001764(k)*(1-x)^(2*k+1))/x, N(3; 0, x) := 1.
a(n, k)= a(n-1, k+1)+((-1)^k)*binomial(2*n+1, k+1)*binomial(3*n+1, n)/(3*n+1) if k=0, .., (2*n-3); a(n, k)= ((-1)^k)*binomial(2*n+1, k+1)*binomial(3*n+1, n)/(3*n+1) if k=(2*n-2), ..., 2*n; else 0.
Showing 1-10 of 13 results. Next