cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A115129 Partial sums of A005587. Fourth column of triangle A115127.

Original entry on oeis.org

14, 56, 146, 311, 586, 1015, 1652, 2562, 3822, 5522, 7766, 10673, 14378, 19033, 24808, 31892, 40494, 50844, 63194, 77819, 95018, 115115, 138460, 165430, 196430, 231894, 272286, 318101, 369866, 428141, 493520, 566632, 648142, 738752, 839202
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Crossrefs

Cf. A024191 (third column of A115127).

Programs

  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{14,56,146,311,586,1015},40] (* or *) CoefficientList[Series[(14-28x+20x^2-5x^3)/(1-x)^6,{x,0,40}],x] (* Harvey P. Dale, Apr 24 2016 *)

Formula

G.f.: (14 - 28*x + 20*x^2 - 5*x^3)/(1 - x)^6.
a(n)=A115127(n+4, 4), n>=1.
a(0)=14, a(1)=56, a(2)=146, a(3)=311, a(4)=586, a(5)=1015, a(n)= 6*a(n-1)- 15*a(n-2)+ 20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Apr 24 2016

A106566 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 1, 1, 1, 1, 1, 1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 0

Views

Author

Philippe Deléham, May 30 2005

Keywords

Comments

Catalan convolution triangle; g.f. for column k: (x*c(x))^k with c(x) g.f. for A000108 (Catalan numbers).
Riordan array (1, xc(x)), where c(x) the g.f. of A000108; inverse of Riordan array (1, x*(1-x)) (see A109466).
Diagonal sums give A132364. - Philippe Deléham, Nov 11 2007

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,  1;
  0,   5,   5,  3,  1;
  0,  14,  14,  9,  4,  1;
  0,  42,  42, 28, 14,  5, 1;
  0, 132, 132, 90, 48, 20, 6, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production array is
  0, 1,
  0, 1, 1,
  0, 1, 1, 1,
  0, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
		

Crossrefs

The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
See also A009766, A033184, A059365 for other versions.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    A106566:= func< n,k | n eq 0 select 1 else (k/n)*Binomial(2*n-k-1, n-k) >;
    [A106566(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 06 2021
    
  • Maple
    A106566 := proc(n,k)
        if n = 0 then
            1;
        elif k < 0 or k > n then
            0;
        else
            binomial(2*n-k-1,n-k)*k/n ;
        end if;
    end proc: # R. J. Mathar, Mar 01 2015
  • Mathematica
    T[n_, k_] := Binomial[2n-k-1, n-k]*k/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, #(1-Sqrt[1-4#])/(2#)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • PARI
    {T(n, k) = if( k<=0 || k>n, n==0 && k==0, binomial(2*n - k, n) * k/(2*n - k))}; /* Michael Somos, Oct 01 2022 */
  • Sage
    def A106566(n, k): return 1 if (n==0) else (k/n)*binomial(2*n-k-1, n-k)
    flatten([[A106566(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 06 2021
    

Formula

T(n, k) = binomial(2n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0.
T(0, 0) = 1; T(n, 0) = 0 if n > 0; T(0, k) = 0 if k > 0; for k > 0 and n > 0: T(n, k) = Sum_{j>=0} T(n-1, k-1+j).
Sum_{j>=0} T(n+j, 2j) = binomial(2n-1, n), n > 0.
Sum_{j>=0} T(n+j, 2j+1) = binomial(2n-2, n-1), n > 0.
Sum_{k>=0} (-1)^(n+k)*T(n, k) = A064310(n). T(n, k) = (-1)^(n+k)*A099039(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = 0,1,2,3,4,5,6,7,8 respectively.
Sum_{k>=0} T(n, k)*x^(n-k) = C(x, n); C(x, n) are the generalized Catalan numbers.
Sum_{j=0..n-k} T(n+k,2*k+j) = A039599(n,k).
Sum_{j>=0} T(n,j)*binomial(j,k) = A039599(n,k).
Sum_{k=0..n} T(n,k)*A000108(k) = A127632(n).
Sum_{k=0..n} T(n,k)*(x+1)^k*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x= 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Aug 25 2007
Sum_{k=0..n} T(n,k)*A000108(k-1) = A121988(n), with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 27 2007
T(n,k)*2^(n-k) = A110510(n,k); T(n,k)*3^(n-k) = A110518(n,k). - Philippe Deléham, Nov 11 2007
Sum_{k=0..n} T(n,k)*A000045(k) = A109262(n), A000045: Fibonacci numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A000129(k) = A143464(n), A000129: Pell numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A100335(k) = A002450(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A100334(k) = A001906(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A099322(k) = A015565(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A106233(k) = A003462(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A151821(k+1) = A100320(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A082505(k+1) = A144706(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A000045(2k+2) = A026671(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A122367(k) = A026726(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A008619(k) = A000958(n+1). - Philippe Deléham, Nov 15 2009
Sum_{k=0..n} T(n,k)*A027941(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - x*z*c(z)) where c(z) the g.f. of A000108. - Michael Somos, Oct 01 2022

Extensions

Formula corrected by Philippe Deléham, Oct 31 2008
Corrected by Philippe Deléham, Sep 17 2009
Corrected by Alois P. Heinz, Aug 02 2012

A214292 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n with T(n,0) = n and T(n,n) = -n.

Original entry on oeis.org

0, 1, -1, 2, 0, -2, 3, 2, -2, -3, 4, 5, 0, -5, -4, 5, 9, 5, -5, -9, -5, 6, 14, 14, 0, -14, -14, -6, 7, 20, 28, 14, -14, -28, -20, -7, 8, 27, 48, 42, 0, -42, -48, -27, -8, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44, -10
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 12 2012

Keywords

Examples

			The triangle begins:
    0:                              0
    1:                            1   -1
    2:                          2   0   -2
    3:                       3    2   -2   -3
    4:                     4    5   0   -5   -4
    5:                  5    9    5   -5   -9   -5
    6:                6   14   14   0  -14  -14   -6
    7:             7   20   28   14  -14  -28  -20   -7
    8:           8   27   48   42   0  -42  -48  -27   -8
    9:        9   35   75   90   42  -42  -90  -75  -35   -9
   10:     10   44  110  165  132   0 -132 -165 -110  -44  -10
   11:  11   54  154  275  297  132 -132 -297 -275 -154  -54  -11  .
		

Crossrefs

Programs

  • Haskell
    a214292 n k = a214292_tabl !! n !! k
    a214292_row n = a214292_tabl !! n
    a214292_tabl = map diff $ tail a007318_tabl
       where diff row = zipWith (-) (tail row) row
  • Mathematica
    row[n_] := Table[Binomial[n, k], {k, 0, n}] // Differences;
    T[n_, k_] := row[n + 1][[k + 1]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 31 2018 *)

Formula

T(n,k) = A007318(n+1,k+1) - A007318(n+1,k), 0<=k<=n, i.e. first differences of rows in Pascal's triangle;
T(n,k) = -T(n,k);
row sums and central terms equal 0, cf. A000004;
sum of positive elements of n-th row = A014495(n+1);
T(n,0) = n;
T(n,1) = A000096(n-2) for n > 1; T(n,1) = - A080956(n) for n > 0;
T(n,2) = A005586(n-4) for n > 3; T(n,2) = A129936(n-2);
T(n,3) = A005587(n-6) for n > 5;
T(n,4) = A005557(n-9) for n > 8;
T(n,5) = A064059(n-11) for n > 10;
T(n,6) = A064061(n-13) for n > 12;
T(n,7) = A124087(n) for n > 14;
T(n,8) = A124088(n) for n > 16;
T(2*n+1,n) = T(2*n+2,n) = A000108(n+1), Catalan numbers;
T(2*n+3,n) = A000245(n+2);
T(2*n+4,n) = A002057(n+1);
T(2*n+5,n) = A000344(n+3);
T(2*n+6,n) = A003517(n+3);
T(2*n+7,n) = A000588(n+4);
T(2*n+8,n) = A003518(n+4);
T(2*n+9,n) = A001392(n+5);
T(2*n+10,n) = A003519(n+5);
T(2*n+11,n) = A000589(n+6);
T(2*n+12,n) = A090749(n+6);
T(2*n+13,n) = A000590(n+7).

A120730 Another version of Catalan triangle A009766.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 5, 4, 1, 0, 0, 0, 5, 9, 5, 1, 0, 0, 0, 0, 14, 14, 6, 1, 0, 0, 0, 0, 14, 28, 20, 7, 1, 0, 0, 0, 0, 0, 42, 48, 27, 8, 1, 0, 0, 0, 0, 0, 42, 90, 75, 35, 9, 1, 0, 0, 0, 0, 0, 0, 132, 165, 110, 44, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 17 2006, corrected Sep 15 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, ...] DELTA [1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...] where DELTA is the operator defined in A084938.
Aerated version gives A165408. - Philippe Deléham, Sep 22 2009
T(n,k) is the number of length n left factors of Dyck paths having k up steps. Example: T(5,4)=4 because we have UDUUU, UUDUU, UUUDU, and UUUUD, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Jun 19 2011
With zeros omitted: 1,1,1,1,2,1,2,3,1,5,4,1,... = A008313. - Philippe Deléham, Nov 02 2011

Examples

			As a triangle, this begins:
  1;
  0,  1;
  0,  1,  1;
  0,  0,  2,  1;
  0,  0,  2,  3,  1;
  0,  0,  0,  5,  4,  1;
  0,  0,  0,  5,  9,  5,  1;
  0,  0,  0,  0, 14, 14,  6,  1;
  ...
		

Crossrefs

Programs

  • Magma
    A120730:= func< n,k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >;
    [A120730(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Nov 07 2022
    
  • Maple
    G := 4*z/((2*z-1+sqrt(1-4*z^2*t))*(1+sqrt(1-4*z^2*t))): Gser := simplify(series(G, z = 0, 13)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form  # Emeric Deutsch, Jun 19 2011
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    T:= (n, k)-> b(n, 2*k-n):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Oct 13 2022
  • Mathematica
    b[x_, y_]:= b[x, y]= If[y<0 || y>x, 0, If[x==0, 1, Sum[b[x-1, y+j], {j, {-1, 1}}] ]];
    T[n_, k_] := b[n, 2 k - n];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 21 2022, after Alois P. Heinz *)
    T[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)];
    Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n,k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    flatten([[A120730(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 07 2022

Formula

G.f.: G(t,z) = 4*z/((2*z-1+sqrt(1-4*t*z^2))*(1+sqrt(1-4*t*z^2))). - Emeric Deutsch, Jun 19 2011
Sum_{k=0..n} x^k*T(n,n-k) = A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x=1,2,3,4,5,6,7,8,9 respectively. [corrected by Philippe Deléham, Oct 16 2008]
T(2*n,n) = A000108(n); A000108: Catalan numbers.
From Philippe Deléham, Oct 18 2008: (Start)
Sum_{k=0..n} T(n,k)^2 = A000108(n) and Sum_{n>=k} T(n,k) = A000108(k+1).
Sum_{k=0..n} T(n,k)^3 = A003161(n).
Sum_{k=0..n} T(n,k)^4 = A129123(n). (End)
Sum_{k=0..n}, T(n,k)*x^k = A000007(n), A001405(n), A151281(n), A151162(n), A151254(n), A156195(n), A156361(n), A156362(n), A156566(n), A156577(n) for x=0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 10 2009
From G. C. Greubel, Nov 07 2022: (Start)
T(n, k) = 0 if n > 2*k, otherwise binomial(n, k)*(2*k-n+1)/(k+1).
Sum_{k=0..n} (-1)^k*T(n,k) = A105523(n).
Sum_{k=0..n} (-1)^k*T(n,k)^2 = -A132889(n), n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A357654(n).
T(n, n-1) = A001477(n).
T(n, n-2) = [n=2] + A000096(n-3), n >= 2.
T(n, n-3) = 2*[n<5] + A005586(n-5), n >= 3.
T(n, n-4) = 5*[n<7] - 2*[n=4] + A005587(n-7), n >= 4.
T(2*n+1, n+1) = A000108(n+1), n >= 0.
T(2*n-1, n+1) = A099376(n-1), n >= 1. (End)

A005582 a(n) = n*(n+1)*(n+2)*(n+7)/24.

Original entry on oeis.org

0, 2, 9, 25, 55, 105, 182, 294, 450, 660, 935, 1287, 1729, 2275, 2940, 3740, 4692, 5814, 7125, 8645, 10395, 12397, 14674, 17250, 20150, 23400, 27027, 31059, 35525, 40455, 45880, 51832, 58344, 65450, 73185, 81585, 90687, 100529, 111150, 122590, 134890
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of Dyck (n+2)-paths with exactly 2 rows of peaks. A row of peaks is a maximal sequence of peaks all at the same height and 2 units apart. For example, UDUDUD ( = /\/\/\ ) contains exactly one row of peaks, as does UUUDDD, but UDUUDDUD has three and a(1)=2 counts UDUUDD, UUDDUD. - David Callan, Mar 02 2005
If X is an n-set and Y a fixed 2-subset of X then a(n-4) is equal to the number of (n-4)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n>=7, a(n-7) is the number of (0,1) n X n matrices A<=P^(-1)+I+P having exactly two 1's in every row and column with perA=16. - Vladimir Shevelev, Apr 12 2010
Row 2 of the convolution array A213550. - Clark Kimberling, Jun 20 2012
a(n-1) = risefac(n, 4)/4! - risefac(n, 2)/2! is for n >= 1 also the number of independent components of a symmetric traceless tensor of rank 4 and dimension n. Here risefac is the rising factorial. - Wolfdieter Lang, Dec 10 2015
Consider the array formed by the second polygonal numbers of increasing rank:
A000217(-1-n): 0, 1, 3, 6, 10, 15, ...
A000270(-1-n): 1, 4, 9, 16, 25, 36, ...
A000326(-1-n): 2, 7, 15, 26, 40, 57, ...
A000384(-1-n): 3, 10, 21, 36, 55, 78, ...
Then the antidiagonal sums yield this sequence. - Michael Somos, Nov 23 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • Vladimir S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19. [From Vladimir Shevelev, Apr 12 2010]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #51 (the case k=4) (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Partial sums of A005581.

Programs

  • Maple
    [seq(binomial(n,4)+2*binomial(n,3), n=2..43)]; # Zerinvary Lajos, Jul 26 2006
    seq((n+4)*binomial(n,4)/n, n=3..43); # Zerinvary Lajos, Feb 28 2007
    A005582:=(-2+z)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[n(n+1)(n+2)(n+7)/24,{n,0,40}] (* Harvey P. Dale, Jun 01 2012 *)
  • PARI
    concat(0, Vec(x*(2-x)/(1-x)^5 + O(x^100))) \\ Altug Alkan, Dec 10 2015

Formula

a(n) = binomial(n+3, n-1) + binomial(n+2, n-1).
a(n) = binomial(n,4) + 2*binomial(n,3), n>=2. - Zerinvary Lajos, Jul 26 2006
From Colin Barker, Jan 28 2012: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(2-x)/(1-x)^5. (End)
a(n) = Sum_{k=1..n} ( Sum_{i=1..k} i(n-k+2) ). - Wesley Ivan Hurt, Sep 26 2013
a(n+1) = A127672(8+n, n), n >= 0, with the Chebyshev C-polynomial coefficients A127672(n, k). See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
E.g.f.: (1/24)*x*(48 + 60*x + 16*x^2 + x^3)*exp(x). - G. C. Greubel, Jul 01 2017
Sum_{n>=1} 1/a(n) = 853/1225. - Amiram Eldar, Jan 02 2021
a(n) = A005587(-7-n) for all n in Z. - Michael Somos, Nov 23 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 01 2000

A064059 Seventh column of Catalan triangle A009766.

Original entry on oeis.org

132, 429, 1001, 2002, 3640, 6188, 9996, 15504, 23256, 33915, 48279, 67298, 92092, 123970, 164450, 215280, 278460, 356265, 451269, 566370, 704816, 870232, 1066648, 1298528, 1570800, 1888887, 2258739, 2686866, 3180372, 3746990, 4395118, 5133856, 5973044
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Crossrefs

Cf. A000096, A005586, A005587, A005557 (third to sixth column).

Programs

  • Magma
    A064059:= func< n | (n+1)*Binomial(n+12,5)/6 >;
    [A064059(n): n in [0..40]]; // G. C. Greubel, Sep 27 2024
    
  • Maple
    [seq(binomial(n+1,6)-2*binomial(n,5),n=12..55)]; # Zerinvary Lajos, Jul 19 2006
  • Mathematica
    CoefficientList[Series[(42 z^5-252 z^4+616 z^3-770 z^2+495 z-132)/(z-1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{132,429,1001,2002,3640,6188,9996},40] (* Harvey P. Dale, Jan 08 2025 *)
  • SageMath
    def A064059(n): return (n+1)*binomial(n+12,5)//6
    [A064059(n) for n in range(41)] # G. C. Greubel, Sep 27 2024

Formula

G.f.: (132-495*x+770*x^2-616*x^3+252*x^4-42*x^5)/(1-x)^7; numerator polynomial is N(2;5, x) from A062991.
a(n) = A009766(n+6, 6) = (n+1)*binomial(n+12,5)/6.
a(n) = binomial(n+13,6) - 2*binomial(n+12,5). - Zerinvary Lajos, Jul 19 2006
a(n) = A214292(n+11,5). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 25961/2134440.
Sum_{n>=0} (-1)^n/a(n) = 4160*log(2)/77 - 79917773/2134440. (End)

A192174 Triangle T(n,k) of the coefficients [x^(n-k)] of the polynomial p(0,x)=-1, p(1,x)=x and p(n,x) = x*p(n-1,x) - p(n-2,x) in row n, column k.

Original entry on oeis.org

-1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, -1, 0, -1, 1, 0, -2, 0, -1, 0, 1, 0, -3, 0, 0, 0, 1, 1, 0, -4, 0, 2, 0, 2, 0, 1, 0, -5, 0, 5, 0, 2, 0, -1, 1, 0, -6, 0, 9, 0, 0, 0, -3, 0, 1, 0, -7, 0, 14, 0, -5, 0, -5, 0, 1, 1, 0, -8, 0, 20, 0, -14, 0, -5, 0, 4, 0
Offset: 0

Views

Author

Paul Curtz, Jun 24 2011

Keywords

Comments

Consider the Catalan triangle A009766 antisymmetrically extended by a mirror along the diagonal (see also A176239):
0, -1, -1, -1, -1, -1, -1, -1,
1, 0, -1, -2, -3, -4, -5, -6,
1, 1, 0, -2, -5, -9, -14, -20,
1, 2, 2, 0, -5, -14, -28, -48,
1, 3, 5, 5, 0, -14, -42, -90,
1, 4, 9, 14, 14, 0, -42, -132,
1, 5, 14, 28, 42, 42, 0, -132,
1, 6, 20, 48, 90, 132, 132, 0.
The rows in this array are essentially the columns of T(n,k).

Examples

			Triangle begins
  -1;      # -1
   1,  0;      # x
   1,  0,  1;      # x^2+1
   1,  0,  0,  0;      # x^3
   1,  0, -1,  0, -1;      # x^4-x^2-1
   1,  0, -2,  0, -1,  0;
   1,  0, -3,  0,  0,  0,  1;
   1,  0, -4,  0,  2,  0,  2,  0;
   1,  0, -5,  0,  5,  0,  2,  0, -1;
   1,  0, -6,  0,  9,  0,  0,  0, -3,  0;
   1,  0, -7,  0, 14,  0, -5,  0, -5,  0,  1;
   1,  0, -8,  0, 20,  0,-14,  0, -5,  0,  4,  0;
   1,  0, -9,  0, 27,  0,-28,  0,  0,  0,  9,  0, -1;
		

Crossrefs

Cf. A194084. - Paul Curtz, Aug 16 2011

Programs

  • Maple
    p:= proc(n,x) option remember: if n=0 then -1 elif n=1 then x elif n>=2 then x*procname(n-1,x)-procname(n-2,x) fi: end: A192174 := proc(n,k): coeff(p(n,x),x,n-k): end: seq(seq(A192174(n,k),k=0..n), n=0..11); # Johannes W. Meijer, Aug 21 2011

Formula

Sum_{k=0..n} T(n,k) = A057079(n-1).
Apparently T(3s,2s-2) = (-1)^(s+1)*A000245(s), s >= 1.

A176239 Shifted signed Catalan triangle T(n,k) = (-1)^*(n+k+1)*A009766(n,k-n+1) read by rows.

Original entry on oeis.org

0, -1, 1, -1, 0, 2, 0, 1, -2, 2, 0, -5, 0, 0, 1, -3, 5, -5, 0, 14, 0, 0, 0, 1, -4, 9, -14, 14, 0, -42, 0, 0, 0, 0, 1, -5, 14, -28, 42, -42, 0, 132, 0, 0, 0, 0, 0, 1, -6, 20, -48, 90, -132, 132, 0, -429, 0, 0, 0, 0, 0, 0, 1, -7, 27, -75, 165, -297, 429, -429, 0, 1430
Offset: 0

Views

Author

Paul Curtz, Apr 12 2010

Keywords

Examples

			The triangle starts in row n=0 with columns 0 <= k < 2*(n+1) as:
0,-1;                          (-1)^k*k  A001477
1,-1,.0,.2;                      (-1)^(k+1)*(k+1)*(k-2)/2  A080956, A000096
0,.1,-2,.2,.0,-5;                 (-1)^n*k*(k+1)*(k-4)/6 A129936, A005586
0,.0,.1,-3,.5,-5,..0,.14;             (-1)^k*k*(k+1)*(k-1)*(k-6)/24, A005587
0,.0,.0,.1,-4,.9,-14,.14,.0,-42;           A005557, A034807
0,.0,.0,.0,.1,-5,.14,-28,42,-42,0,132;
		

Crossrefs

Programs

  • Maple
    A009766 := proc(n,k) if k<0 or k >n then 0; else binomial(n+k,n)*(n-k+1)/(n+1) ; end if; end proc:
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A176239 := proc(n,k) if k <= 2*n-1 then (-1)^(n+k+1)*A009766(n,k-n+1) elif k = 2*n then 0; elif k < 2*(n+1) then (-1)^(n+1)*A000108(n+1); else 0; end if; end proc: # R. J. Mathar, Dec 03 2010

Formula

T(n,k) = T(n+1,k)+T(n+1,k+1), k <= 2n+1.
T(n,2n) = 0.
T(n,2n+1) = (-1)^(n+1)*A000108(n+1).
T(n,k) = (-1)^(n+k+1)*A009766(n,k-n+1), k < 2n.

A115126 First (k=1) triangle of numbers related to totally asymmetric exclusion process (case alpha=1, beta=1).

Original entry on oeis.org

1, 2, 2, 3, 5, 5, 4, 9, 14, 14, 5, 14, 28, 42, 42, 6, 20, 48, 90, 132, 132, 7, 27, 75, 165, 297, 429, 429, 8, 35, 110, 275, 572, 1001, 1430, 1430, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 10, 54, 208, 637, 1638, 3640, 7072, 11934, 16796, 16796, 11, 65, 273, 910
Offset: 1

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

First (k=0) column removed from Catalan triangle A009766(n,k).
In the Derrida et al. 1992 reference this triangle, called here X(alpha=1,beta=1;k=1,n,m), n >= m >= 1, is called there X_{N=n}(K=1,p=m) with alpha=1 and beta=1.
The column sequences give A000027 (natural numbers), A000096, A005586, A005587, A005557, A064059, A064061 for m=1..7. The numerator polynomials for the o.g.f. of column m is found in A062991 and the denominator is (1-x)^(m+1).
The diagonal sequences are convolutions of the Catalan numbers A000108, starting with the main diagonal.

Examples

			[1];[2,2];[3,5,5];[4,9,14,14];...
a(4,2) = 9 = binomial(6,2)*3/5.
		

References

  • B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
  • B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eq. (39), p. 1501, also appendix A1, (A12) p. 1513.

Crossrefs

Row sums give A001453(n+1)=A000108(n+1)-1 (Catalan -1).

Formula

a(n, m)= binomial(n+m, n)*(n-m+1)/(n+1), n>=m>=1; a(n, m)=0 if n
Showing 1-9 of 9 results.