cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 124 results. Next

A033184 Catalan triangle A009766 transposed.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 9, 4, 1, 42, 42, 28, 14, 5, 1, 132, 132, 90, 48, 20, 6, 1, 429, 429, 297, 165, 75, 27, 7, 1, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 1

Views

Author

Keywords

Comments

Triangle read by rows: T(n,k) = number of Dyck n-paths (A000108) containing k returns to ground level. E.g., the paths UDUUDD, UUDDUD each have 2 returns; so T(3,2)=2. Row sums over even-indexed columns are the Fine numbers A000957. - David Callan, Jul 25 2005
Triangular array of numbers a(n,k) = number of linear forests of k planted planar trees and n non-root nodes.
Catalan convolution triangle; with offset [0,0]: a(n,m)=(m+1)*binomial(2*n-m,n-m)/(n+1), n >= m >= 0, else 0. G.f. for column m: c(x)*(x*c(x))^m with c(x) g.f. for A000108 (Catalan). - Wolfdieter Lang, Sep 12 2001
a(n+1,m+1), n >= m >= 0, a(n,m) := 0, nA030528(n,m)*(-1)^(n-m).
a(n,k)=number of Dyck paths of semilength n and having k returns to the axis. Also number of Dyck paths of semilength n and having first peak at height k. Also number of ordered trees with n edges and root degree k. Also number of ordered trees with n edges and having the leftmost leaf at level k. Also number of parallelogram polyominoes of semiperimeter n+1 and having k cells in the leftmost column. - Emeric Deutsch, Mar 01 2004
Triangle T(n,k) with 1<=k<=n given by [0, 1, 1, 1, 1, 1, 1, 1, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] = 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 5, 5, 3, 1; 0, 14, 14, 9, 4, 1; ... where DELTA is the operator defined in A084938; essentially the same triangle as A059365. - Philippe Deléham, Jun 14 2004
Number of Dyck paths of semilength and having k-1 peaks at height 2. - Emeric Deutsch, Aug 31 2004
Riordan array (c(x),x*c(x)), c(x) the g.f. of A000108. Inverse of Riordan array (1-x,x*(1-x)). - Paul Barry, Jun 22 2005
Subtriangle of triangle A106566. - Philippe Deléham, Jan 07 2007
T(n, k) is also the number of order-preserving and order-decreasing full transformations (of an n-chain) with exactly k fixed points. - Abdullahi Umar, Oct 02 2008
Triangle read by rows, product of A065600 and A007318 considered as infinite lower triangular arrays; A033184 = A065600*A007318. - Philippe Deléham, Dec 07 2009
The formula stating "Column k is the k-fold convolution of column 1" is equivalent to repeatedly applying M to [1,0,0,0,...], where M is an upper triangular matrix of all 1's with an additional single subdiagonal of 1's. - Gary W. Adamson, Jun 06 2011
4^(n-1) = (n-th row terms) dot (first n terms in A001792), where A001792 = binomial transform of the natural numbers: (1, 3, 8, 20, 48, 112, ...). Example: 4^4 = 256 = (14, 14, 9, 4, 1) dot (1, 3, 8, 20, 48) = (42 + 42 + 28 + 14 + 5 + 1) = 256. - Gary W. Adamson, Jun 17 2011
The e.g.f. for the n-th subdiagonal of the triangle has the form exp(x)*P(n,x), where P(n,x) is the e.g.f. for row n of triangle A039599. For example, the third row of A039599 is [5, 9, 5, 1] and so the third subdiagonal sequence of this triangle [5, 14, 28, 48, 75, ...] has the e.g.f. exp(x)*(5 + 9*x + 5*x^2/2! + x^3/3!). - Peter Bala, Oct 15 2019
Antidiagonals of convolution matrix of Table 1.3, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019
Also the convolution triangle of A120588(n) = A000108(n-1) for n > 0. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
  ---+-----------------------------------
  n\k|   1    2    3    4    5    6    7
  ---+-----------------------------------
   1 |   1
   2 |   1    1
   3 |   2    2    1
   4 |   5    5    3    1
   5 |  14   14    9    4    1
   6 |  42   42   28   14    5    1
   7 | 132  132   90   48   20    6    1
From _Peter Bala_, Feb 17 2025: (Start)
The array factorizes as an infinite product (read from right to left) of triangular arrays:
  / 1               \        / 1              \ / 1              \ / 1             \
  | 1    1           |       | 0   1          | | 0  1           | | 1  1          |
  | 2    2   1       | = ... | 0   0   1      | | 0  1   1       | | 1  1  1       |
  | 5    5   3   1   |       | 0   0   1  1   | | 0  1   1  1    | | 1  1  1  1    |
  |14   14   9   4  1|       | 0   0   1  1  1| | 0  1   1  1  1 | | 1  1  1  1  1 |
  |...               |       |...             | |...             | |...            |
See Bala, Example 2.1. (End)
		

Crossrefs

Rows of Catalan triangle A009766 read backwards.
a(n, 1) = A000108(n-1). Row sums = A000108(n) (Catalan).
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Cf. A116364 (row squared sums), A120588.

Programs

  • Haskell
    a033184 n k = a033184_tabl !! (n-1) !! (k-1)
    a033184_row n = a033184_tabl !! (n-1)
    a033184_tabl = map reverse a009766_tabl
    -- Reinhard Zumkeller, Feb 19 2014
    
  • Magma
    /* As triangle: */ [[Binomial(2*n-k,n)*k/(2*n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 12 2015
  • Maple
    a := proc(n,k) if k<=n then k*binomial(2*n-k,n)/(2*n-k) else 0 fi end: seq(seq(a(n,k),k=1..n),n=1..10);
    # Uses function PMatrix from A357368. Adds row and column for n, k = 0.
    PMatrix(10, n -> binomial(2*(n-1), n-1) / n); # Peter Luschny, Oct 07 2022
  • Mathematica
    nn = 10; c = (1 - (1 - 4 x)^(1/2))/(2 x); f[list_] := Select[list, # > 0 &]; Map[f, Drop[CoefficientList[Series[y x c/(1 - y x c), {x, 0, nn}], {x, y}],1]] //Flatten (* Geoffrey Critzer, Jan 31 2012 *)
    Flatten[Reverse /@ NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *)
    T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = T[n-1, k-1]+T[n, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    T(n,k)=binomial(2*(n-k)+k,n-k)*(k+1)/(n+1) \\ Paul D. Hanna, Aug 11 2008
    
  • Sage
    # The simplest way to construct the triangle.
    def A033184_triangle(n) :
        T = [0 for i in (0..n)]
        for k in (1..n) :
            T[k] = 1
            for i in range(k-1,0,-1) :
                T[i] = T[i-1] + T[i+1]
            print([T[i] for i in (1..k)])
    A033184_triangle(10) # Peter Luschny, Jan 27 2012
    

Formula

Column k is the k-fold convolution of column 1. The triangle is also defined recursively by (i) entries outside triangle are 0, (ii) top left entry is 1, (iii) every other entry is sum of its east and northwest neighbor. - David Callan, Jul 25 2005
G.f.: t*x*c/(1-t*x*c), where c=(1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Mar 01 2004
T(n+1,k+1) = C(2*n-k, n-k)*(k+1)/(n+1). - Paul D. Hanna, Aug 11 2008
T((m+1)*n+r-1,m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} (k/n)*T((m+1)*n-k-1,m*n-1)*T(r+k,r), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n-1,m-1) = (m/n)*Sum_{k=1..n-m+1} (k*A000108(k-1)*T(n-k-1,m-2)), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n,k) = C(2*n-k-1,n-k) - C(2*n-k-1,n-k-1). - Dennis P. Walsh, Mar 19 2012
T(n,k) = C(2*n-k,n)*k/(2*n-k). - Dennis P. Walsh, Mar 19 2012
T(n,k) = T(n,k-1) - T(n-1,k-2). - Dennis P. Walsh, Mar 19 2012
G.f.: 2*x*y / (1 + sqrt(1 - 4*x) - 2*x*y) = Sum_{n >= k > 0} T(n, k) * x^n * y^k. - Michael Somos, Jun 06 2016

A120730 Another version of Catalan triangle A009766.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 5, 4, 1, 0, 0, 0, 5, 9, 5, 1, 0, 0, 0, 0, 14, 14, 6, 1, 0, 0, 0, 0, 14, 28, 20, 7, 1, 0, 0, 0, 0, 0, 42, 48, 27, 8, 1, 0, 0, 0, 0, 0, 42, 90, 75, 35, 9, 1, 0, 0, 0, 0, 0, 0, 132, 165, 110, 44, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 17 2006, corrected Sep 15 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, ...] DELTA [1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...] where DELTA is the operator defined in A084938.
Aerated version gives A165408. - Philippe Deléham, Sep 22 2009
T(n,k) is the number of length n left factors of Dyck paths having k up steps. Example: T(5,4)=4 because we have UDUUU, UUDUU, UUUDU, and UUUUD, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Jun 19 2011
With zeros omitted: 1,1,1,1,2,1,2,3,1,5,4,1,... = A008313. - Philippe Deléham, Nov 02 2011

Examples

			As a triangle, this begins:
  1;
  0,  1;
  0,  1,  1;
  0,  0,  2,  1;
  0,  0,  2,  3,  1;
  0,  0,  0,  5,  4,  1;
  0,  0,  0,  5,  9,  5,  1;
  0,  0,  0,  0, 14, 14,  6,  1;
  ...
		

Crossrefs

Programs

  • Magma
    A120730:= func< n,k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >;
    [A120730(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Nov 07 2022
    
  • Maple
    G := 4*z/((2*z-1+sqrt(1-4*z^2*t))*(1+sqrt(1-4*z^2*t))): Gser := simplify(series(G, z = 0, 13)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form  # Emeric Deutsch, Jun 19 2011
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    T:= (n, k)-> b(n, 2*k-n):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Oct 13 2022
  • Mathematica
    b[x_, y_]:= b[x, y]= If[y<0 || y>x, 0, If[x==0, 1, Sum[b[x-1, y+j], {j, {-1, 1}}] ]];
    T[n_, k_] := b[n, 2 k - n];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 21 2022, after Alois P. Heinz *)
    T[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)];
    Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n,k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    flatten([[A120730(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 07 2022

Formula

G.f.: G(t,z) = 4*z/((2*z-1+sqrt(1-4*t*z^2))*(1+sqrt(1-4*t*z^2))). - Emeric Deutsch, Jun 19 2011
Sum_{k=0..n} x^k*T(n,n-k) = A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x=1,2,3,4,5,6,7,8,9 respectively. [corrected by Philippe Deléham, Oct 16 2008]
T(2*n,n) = A000108(n); A000108: Catalan numbers.
From Philippe Deléham, Oct 18 2008: (Start)
Sum_{k=0..n} T(n,k)^2 = A000108(n) and Sum_{n>=k} T(n,k) = A000108(k+1).
Sum_{k=0..n} T(n,k)^3 = A003161(n).
Sum_{k=0..n} T(n,k)^4 = A129123(n). (End)
Sum_{k=0..n}, T(n,k)*x^k = A000007(n), A001405(n), A151281(n), A151162(n), A151254(n), A156195(n), A156361(n), A156362(n), A156566(n), A156577(n) for x=0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 10 2009
From G. C. Greubel, Nov 07 2022: (Start)
T(n, k) = 0 if n > 2*k, otherwise binomial(n, k)*(2*k-n+1)/(k+1).
Sum_{k=0..n} (-1)^k*T(n,k) = A105523(n).
Sum_{k=0..n} (-1)^k*T(n,k)^2 = -A132889(n), n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A357654(n).
T(n, n-1) = A001477(n).
T(n, n-2) = [n=2] + A000096(n-3), n >= 2.
T(n, n-3) = 2*[n<5] + A005586(n-5), n >= 3.
T(n, n-4) = 5*[n<7] - 2*[n=4] + A005587(n-7), n >= 4.
T(2*n+1, n+1) = A000108(n+1), n >= 0.
T(2*n-1, n+1) = A099376(n-1), n >= 1. (End)

A064059 Seventh column of Catalan triangle A009766.

Original entry on oeis.org

132, 429, 1001, 2002, 3640, 6188, 9996, 15504, 23256, 33915, 48279, 67298, 92092, 123970, 164450, 215280, 278460, 356265, 451269, 566370, 704816, 870232, 1066648, 1298528, 1570800, 1888887, 2258739, 2686866, 3180372, 3746990, 4395118, 5133856, 5973044
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Crossrefs

Cf. A000096, A005586, A005587, A005557 (third to sixth column).

Programs

  • Magma
    A064059:= func< n | (n+1)*Binomial(n+12,5)/6 >;
    [A064059(n): n in [0..40]]; // G. C. Greubel, Sep 27 2024
    
  • Maple
    [seq(binomial(n+1,6)-2*binomial(n,5),n=12..55)]; # Zerinvary Lajos, Jul 19 2006
  • Mathematica
    CoefficientList[Series[(42 z^5-252 z^4+616 z^3-770 z^2+495 z-132)/(z-1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{132,429,1001,2002,3640,6188,9996},40] (* Harvey P. Dale, Jan 08 2025 *)
  • SageMath
    def A064059(n): return (n+1)*binomial(n+12,5)//6
    [A064059(n) for n in range(41)] # G. C. Greubel, Sep 27 2024

Formula

G.f.: (132-495*x+770*x^2-616*x^3+252*x^4-42*x^5)/(1-x)^7; numerator polynomial is N(2;5, x) from A062991.
a(n) = A009766(n+6, 6) = (n+1)*binomial(n+12,5)/6.
a(n) = binomial(n+13,6) - 2*binomial(n+12,5). - Zerinvary Lajos, Jul 19 2006
a(n) = A214292(n+11,5). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 25961/2134440.
Sum_{n>=0} (-1)^n/a(n) = 4160*log(2)/77 - 79917773/2134440. (End)

A030238 Backwards shallow diagonal sums of Catalan triangle A009766.

Original entry on oeis.org

1, 1, 3, 7, 20, 59, 184, 593, 1964, 6642, 22845, 79667, 281037, 1001092, 3595865, 13009673, 47366251, 173415176, 638044203, 2357941142, 8748646386, 32576869203, 121701491701, 456012458965, 1713339737086, 6453584646837, 24364925260024, 92185136438942
Offset: 0

Views

Author

Keywords

Comments

Number of linear forests of planted planar trees with n nodes (Christian G. Bower).
Number of ordered trees with n+2 edges and having no branches of length 1 starting from the root. Example: a(1)=1 because the only ordered tree with 3 edges having no branch of length 1 starting from the root is the path tree of length 3. a(n) = A127158(n+2,0). - Emeric Deutsch, Mar 01 2007
Hankel transform is A056520. - Paul Barry, Oct 16 2007

Crossrefs

Programs

  • Maple
    g:=(1-sqrt(1-4*z))/z/(2-z+z*sqrt(1-4*z)): gser:=series(g,z=0,30): seq(coeff(gser,z,n),n=0..25); # Emeric Deutsch, Mar 01 2007
  • Mathematica
    Sum[ triangle[ n-k, (n-k)-(k-1) ], {k, 1, Floor[ (n+1)/2 ]} ]
    CoefficientList[Series[(1-Sqrt[1-4*x])/x/(2-x+x*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

INVERT transform of 1, 2, 2, 5, 14, 42, 132, ... (cf. A000108).
a(n) = Sum_{k=0..floor(n/2)} (k+1)*binomial(2*n-3*k+1, n-k+1)/(2*n-3*k+1). Diagonal sums of A033184. - Paul Barry, Jun 22 2004
a(n) = Sum_{k=0..floor(n/2)} (k+1)*binomial(2*n-3*k, n-k)/(n-k+1). - Paul Barry, Feb 02 2005
G.f.: (1-sqrt(1-4*z))/(z*(2-z+z*sqrt(1-4*z))). - Emeric Deutsch, Mar 01 2007
G.f.: c(z)/(1-z^2*c(z)) where c(z) = (1-sqrt(1-4*z))/(2*z). - Ira M. Gessel, Sep 21 2020
D-finite with recurrence: (n+1)*a(n) + (-5*n+1)*a(n-1) + 2*(2*n-1)*a(n-2) + (n+1)*a(n-3) + 2*(-2*n+1)*a(n-4) = 0. - R. J. Mathar, Nov 30 2012
a(n) = Sum_{k=0..n} A000108(k)*A132364(n-k). - Philippe Deléham, Feb 27 2013
a(n) ~ 2^(2*n+6) / (49 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014

Extensions

More terms from Christian G. Bower, Apr 15 1998

A064061 Eighth column of Catalan triangle A009766.

Original entry on oeis.org

429, 1430, 3432, 7072, 13260, 23256, 38760, 62016, 95931, 144210, 211508, 303600, 427570, 592020, 807300, 1085760, 1442025, 1893294, 2459664, 3164480, 4034712, 5101360, 6399888, 7970688, 9859575, 12118314, 14805180, 17985552, 21732542, 26127660, 31261516
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Crossrefs

Cf. A009766, A064059 (seventh column), A062991, A214292.

Programs

  • Magma
    A064061:= func< n | (n+1)*Binomial(n+14, 6)/7 >;
    [A064061(n): n in [0..40]]; // G. C. Greubel, Sep 28 2024
    
  • Maple
    [seq(binomial(n,7)-binomial(n,5),n=13..37)]; # Zerinvary Lajos, Nov 25 2006
  • Mathematica
    CoefficientList[Series[(132*z^6 - 924*z^5 + 2730*z^4 - 4368*z^3 + 4004*z^2 - 2002*z + 429)/(z - 1)^8, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
    Table[Binomial[n,7]-Binomial[n,5],{n,13,50}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{429,1430,3432,7072,13260,23256,38760,62016},40] (* Harvey P. Dale, Sep 03 2015 *)
  • SageMath
    def A064061(n): return (n+1)*binomial(n+14,6)//7
    [A064061(n) for n in range(41)] # G. C. Greubel, Sep 28 2024

Formula

a(n) = A009766(n+7, 7) = (n+1)*binomial(n+14, 6)/7.
G.f.: (429-2002*x+4004*x^2-4368*x^3+2730* x^4-924*x^5+132*x^6)/(1-x)^8; numerator polynomial is N(2;6, x) from A062991.
a(n) = C(n+13,7) - C(n+13,5). - Zerinvary Lajos, Nov 25 2006
a(n) = A214292(n+13,6). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 323171/88339680.
Sum_{n>=0} (-1)^n/a(n) = 7929257917/88339680 - 55552*log(2)/429. (End)

A234950 Borel's triangle read by rows: T(n,k) = Sum_{s=k..n} binomial(s,k)*C(n,s), where C(n,s) is an entry in Catalan's triangle A009766.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 14, 28, 20, 5, 42, 120, 135, 70, 14, 132, 495, 770, 616, 252, 42, 429, 2002, 4004, 4368, 2730, 924, 132, 1430, 8008, 19656, 27300, 23100, 11880, 3432, 429, 4862, 31824, 92820, 157080, 168300, 116688, 51051, 12870, 1430
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2014

Keywords

Examples

			Triangle begins:
     1,
     2,    1,
     5,    6,     2,
    14,   28,    20,     5,
    42,  120,   135,    70,    14,
   132,  495,   770,   616,   252,    42,
   429, 2002,  4004,  4368,  2730,   924,  132,
  1430, 8008, 19656, 27300, 23100, 11880, 3432, 429,
  ...
		

Crossrefs

A062991 is a signed version. See also A094385 for another version.
Cf. A009766.
The two borders give the Catalan numbers A000108.
Cf. A062992 (row sums).
The second and third columns give A002694 and A244887.

Programs

  • Haskell
    a234950 n k = sum [a007318 s k * a009766 n s | s <- [k..n]]
    a234950_row n = map (a234950 n) [0..n]
    a234950_tabl = map a234950_row [0..]
    -- Reinhard Zumkeller, Jan 12 2014
    
  • Maple
    T := (n,k) -> 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)):
    seq(seq(T(n,k), k=0..n), n=0..8); # Peter Luschny, Sep 04 2018
  • Mathematica
    T[n_, k_] := 2 Binomial[2n+1, n] (n-k+1) Binomial[n+1, k]/((k+n+1)(k+n+2));
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018, from Maple *)
  • PARI
    T(n,k) = sum(s=k, n, binomial(s, k)*binomial(n+s, n)*(n-s+1)/(n+1));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Sep 06 2015

Formula

G.f.: 1/x*(1-sqrt(1-4*x-4*x*y))/(1+2*y+sqrt(1-4*x-4*x*y)). - Vladimir Kruchinin, Sep 04 2018
T(n,k) = 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)). - Peter Luschny, Sep 04 2018

A069270 Third level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 2nd level is A069269).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 9, 22, 1, 4, 15, 52, 140, 1, 5, 22, 91, 340, 969, 1, 6, 30, 140, 612, 2394, 7084, 1, 7, 39, 200, 969, 4389, 17710, 53820, 1, 8, 49, 272, 1425, 7084, 32890, 135720, 420732, 1, 9, 60, 357, 1995, 10626, 53820, 254475, 1068012, 3362260
Offset: 0

Views

Author

Henry Bottomley, Mar 12 2002

Keywords

Comments

For the m-th level generalization of Catalan triangle T(n,k) = C(n+mk,k)*(n-k+1)/(n+(m-1)k+1); for n >= k+m: T(n,k) = T(n-m+1,k+1) - T(n-m,k+1); and T(n,n) = T(n+m-1,n-1) = C((m+1)n,n)/(mn+1).
Antidiagonals of convolution matrix of Table 1.5, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019

Examples

			Rows start
  1;
  1,   1;
  1,   2,   4;
  1,   3,   9,  22;
  1,   4,  15,  52, 140;
etc.
		

Crossrefs

Columns include A000012, A000027, A055999.
Right-hand diagonals include A002293, A069271, A006632.
Cf. A130458 (row sums).

Programs

  • Maple
    A069270 := proc(n,k)
            binomial(n+3*k,k)*(n-k+1)/(n+2*k+1) ;
    end proc: # R. J. Mathar, Oct 11 2015
  • Mathematica
    Table[Binomial[n + 3 k, k] (n - k + 1)/(n + 2 k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 27 2019 *)

Formula

T(n, k) = C(n+3k, k)*(n-k+1)/(n+2k+1).
For n >= k+3: T(n, k) = T(n-2, k+1)-T(n-3, k+1).
T(n, n) = T(n+2, n-1) = C(4n, n)/(3n+1).

A140344 Catalan triangle A009766 prepended by n zeros in its n-th row.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 3, 5, 5, 0, 0, 0, 0, 1, 4, 9, 14, 14, 0, 0, 0, 0, 0, 1, 5, 14, 28, 42, 42, 0, 0, 0, 0, 0, 0, 1, 6, 20, 48, 90, 132, 132, 0, 0, 0, 0, 0, 0, 0, 1, 7, 27, 75, 165, 297, 429, 429, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 35, 110, 275, 572, 1001, 1430, 1430
Offset: 0

Views

Author

Paul Curtz, May 29 2008

Keywords

Comments

The triangle's n-th row is also related to recurrences for sequences f(n) which p-th differences, p=n+2: The denominator of the generating function contains a factor 1-2x in these cases.
This factor may be "lifted" either by looking at auxiliary sequences f(n+1)-2f(n) or by considering the corresponding "degenerate" shorter recurrences right away. In the case p=4, the recurrence is f(n)=4f(n-1)-6f(n-2)+4f(n-3) from the 4th row in A135356, the denominator in the g.f. is 1-4x+6x^2-4x^3=(1-2x)(1-2x+2x^2), which yields the degenerate recurrence f(n)=2f(n-1)-2f(n-2) from the 2nd factor and leaves the first three coefficients of 1/(1-2x+2x^2)=1+2x+2x^2+.. in row 2.
A000749 is an example which follows the recurrence but not the degenerate recurrence, but still A000749(n+1)-2A000749(n) = 0, 0, 1, 2, 2,.. starts with the 3 coefficients. A009545 follows both recurrences and starts with the three nonzero terms because there is only a power of x in the numerator of the g.f.
In the case p=5, the recurrence is f(n)=5f(n-1)-10f(n-2)+10f(n-3)-5f(n-4)+2f(n-5), the denominator in the g.f. is 1-5x+10x^2-10x^3+5x^4-2x^5= (1-2x)(1-3x+4x^2-2x^3+x^4), where 1/(1-3x+4x^2-2x^3+x^4) = 1+3x+5x^2+5x^3+... and the 4 coefficients populate row 3.
A049016 obeys the main recurrence but not the degenerate recurrence f(n)=3f(n-1)-4f(n-2)+2f(n-3)-f(n-4), yet A049016(n+1)-2A049016(n)=1, 3, 5, 5,.. starts with the 4 coefficients. A138112 obeys both recurrences and is constructed to start with the 4 coefficients themselves.
In the nomenclature of Foata and Han, this is the doubloon polynomial triangle d_{n,m}(0), up to index shifts. - R. J. Mathar, Jan 27 2011

Examples

			Triangle starts
1;
0,1,1;
0,0,1,2,2;
0,0,0,1,3,5,5;
0,0,0,0,1,4,9,14,14;
		

Crossrefs

Cf. A135356, A130020, A139687, A140343 (p=6), A140342 (p=7).

Programs

  • Mathematica
    Table[Join[Array[0&, n], Table[Binomial[n+k, n]*(n-k+1)/(n+1), {k, 0, n}]], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 16 2014 *)

Extensions

Edited by R. J. Mathar, Jul 10 2008

A176239 Shifted signed Catalan triangle T(n,k) = (-1)^*(n+k+1)*A009766(n,k-n+1) read by rows.

Original entry on oeis.org

0, -1, 1, -1, 0, 2, 0, 1, -2, 2, 0, -5, 0, 0, 1, -3, 5, -5, 0, 14, 0, 0, 0, 1, -4, 9, -14, 14, 0, -42, 0, 0, 0, 0, 1, -5, 14, -28, 42, -42, 0, 132, 0, 0, 0, 0, 0, 1, -6, 20, -48, 90, -132, 132, 0, -429, 0, 0, 0, 0, 0, 0, 1, -7, 27, -75, 165, -297, 429, -429, 0, 1430
Offset: 0

Views

Author

Paul Curtz, Apr 12 2010

Keywords

Examples

			The triangle starts in row n=0 with columns 0 <= k < 2*(n+1) as:
0,-1;                          (-1)^k*k  A001477
1,-1,.0,.2;                      (-1)^(k+1)*(k+1)*(k-2)/2  A080956, A000096
0,.1,-2,.2,.0,-5;                 (-1)^n*k*(k+1)*(k-4)/6 A129936, A005586
0,.0,.1,-3,.5,-5,..0,.14;             (-1)^k*k*(k+1)*(k-1)*(k-6)/24, A005587
0,.0,.0,.1,-4,.9,-14,.14,.0,-42;           A005557, A034807
0,.0,.0,.0,.1,-5,.14,-28,42,-42,0,132;
		

Crossrefs

Programs

  • Maple
    A009766 := proc(n,k) if k<0 or k >n then 0; else binomial(n+k,n)*(n-k+1)/(n+1) ; end if; end proc:
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A176239 := proc(n,k) if k <= 2*n-1 then (-1)^(n+k+1)*A009766(n,k-n+1) elif k = 2*n then 0; elif k < 2*(n+1) then (-1)^(n+1)*A000108(n+1); else 0; end if; end proc: # R. J. Mathar, Dec 03 2010

Formula

T(n,k) = T(n+1,k)+T(n+1,k+1), k <= 2n+1.
T(n,2n) = 0.
T(n,2n+1) = (-1)^(n+1)*A000108(n+1).
T(n,k) = (-1)^(n+k+1)*A009766(n,k-n+1), k < 2n.

A069269 Second level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 3rd level is A069270).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 12, 1, 4, 12, 30, 55, 1, 5, 18, 55, 143, 273, 1, 6, 25, 88, 273, 728, 1428, 1, 7, 33, 130, 455, 1428, 3876, 7752, 1, 8, 42, 182, 700, 2448, 7752, 21318, 43263, 1, 9, 52, 245, 1020, 3876, 13566, 43263, 120175, 246675
Offset: 0

Views

Author

Henry Bottomley, Mar 12 2002

Keywords

Comments

For the m-th level generalization of Catalan triangle T(n,k) = C(n+mk,k)*(n-k+1)/(n+(m-1)k+1); for n >= k+m: T(n,k) = T(n-m+1,k+1) - T(n-m,k+1); and T(n,n) = T(n+m-1,n-1) = C((m+1)n,n)/(mn+1).
Reflected version of A110616. - Philippe Deléham, Jun 15 2007
With offset 1 for n and k, T(n,k) is (conjecturally) the number of permutations of [n] that avoid the patterns 4-2-3-1 and 4-2-5-1-3 and for which the last ascent ends at position k (k=1 if there are no ascents). For example, T(4,1) = 1 counts 4321; T(4,2) = 3 counts 1432, 2431, 3421; T(4,3) = 7 counts 1243, 1342, 2143, 2341, 3142, 3241, 4132. - David Callan, Jul 22 2008
Row sums appear to be in A098746. - R. J. Mathar, May 30 2014

Examples

			Rows start
  1;
  1,  1;
  1,  2,  3;
  1,  3,  7, 12;
  1,  4, 12, 30, 55;
		

Crossrefs

Columns include A000012, A000027, A055998.
Right-hand diagonals include A001764, A006013, A006629, A006630, A006631.
Cf. triangles A007318, A009766, A069270.

Formula

T(n, k) = C(n+2k, k)*(n-k+1)/(n+k+1).
For n >= k+2: T(n, k) = T(n-1, k+1) - T(n-2, k+1).
T(n, n) = T(n+1, n-1) = C(3n, n)/(2n+1).
Showing 1-10 of 124 results. Next