cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069269 Second level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 3rd level is A069270).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 12, 1, 4, 12, 30, 55, 1, 5, 18, 55, 143, 273, 1, 6, 25, 88, 273, 728, 1428, 1, 7, 33, 130, 455, 1428, 3876, 7752, 1, 8, 42, 182, 700, 2448, 7752, 21318, 43263, 1, 9, 52, 245, 1020, 3876, 13566, 43263, 120175, 246675
Offset: 0

Views

Author

Henry Bottomley, Mar 12 2002

Keywords

Comments

For the m-th level generalization of Catalan triangle T(n,k) = C(n+mk,k)*(n-k+1)/(n+(m-1)k+1); for n >= k+m: T(n,k) = T(n-m+1,k+1) - T(n-m,k+1); and T(n,n) = T(n+m-1,n-1) = C((m+1)n,n)/(mn+1).
Reflected version of A110616. - Philippe Deléham, Jun 15 2007
With offset 1 for n and k, T(n,k) is (conjecturally) the number of permutations of [n] that avoid the patterns 4-2-3-1 and 4-2-5-1-3 and for which the last ascent ends at position k (k=1 if there are no ascents). For example, T(4,1) = 1 counts 4321; T(4,2) = 3 counts 1432, 2431, 3421; T(4,3) = 7 counts 1243, 1342, 2143, 2341, 3142, 3241, 4132. - David Callan, Jul 22 2008
Row sums appear to be in A098746. - R. J. Mathar, May 30 2014

Examples

			Rows start
  1;
  1,  1;
  1,  2,  3;
  1,  3,  7, 12;
  1,  4, 12, 30, 55;
		

Crossrefs

Columns include A000012, A000027, A055998.
Right-hand diagonals include A001764, A006013, A006629, A006630, A006631.
Cf. triangles A007318, A009766, A069270.

Formula

T(n, k) = C(n+2k, k)*(n-k+1)/(n+k+1).
For n >= k+2: T(n, k) = T(n-1, k+1) - T(n-2, k+1).
T(n, n) = T(n+1, n-1) = C(3n, n)/(2n+1).

A069271 a(n) = binomial(4*n+1,n)*2/(3*n+2).

Original entry on oeis.org

1, 2, 9, 52, 340, 2394, 17710, 135720, 1068012, 8579560, 70068713, 580034052, 4855986044, 41043559340, 349756577100, 3001701610320, 25921837477692, 225083787458904, 1963988670706228, 17211860478150800, 151433425446423120
Offset: 0

Views

Author

Henry Bottomley, Mar 12 2002

Keywords

Comments

This sequence counts the set B_n of plane trees defined in the Poulalhon and Schaeffer link (Definition 2.2 and Section 4.2, Proposition 4). - David Callan, Aug 20 2014
a(n) is the number of lattice paths of length 4n starting and ending on the x-axis consisting of steps {(1, 1), (1, -3)} that remain on or above the line y=-1. - Sarah Selkirk, Mar 31 2020
a(n) is the number of ordered pairs of 4-ary trees with a (summed) total of n internal nodes. - Sarah Selkirk, Mar 31 2020

Examples

			a(3) = C(4*3+1,3)*2/(3*3+2) = C(13,3)*2/11 = 286*2/11 = 52.
a(3) = 52 since the top row of M^3 = (22, 22, 7, 1).
1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 + 135720*x^7 + ...
q + 2*q^3 + 9*q^5 + 52*q^7 + 340*q^9 + 2394*q^11 + 17710*q^13 + 135720*q^15 + ...
		

Crossrefs

Cf. A002293, A006013, A006632, A069270 for similar generalized Catalan sequences.

Programs

  • Magma
    [2*Binomial(4*n+1, n)/(3*n+2): n in [0..20]];  // Bruno Berselli, Mar 04 2011
  • Maple
    BB:=[T,{T=Prod(Z,Z,Z,F,F),F=Sequence(B),B=Prod(F,F,F,Z)}, unlabeled]: seq(count(BB,size=i),i=3..23); # Zerinvary Lajos, Apr 22 2007
  • Mathematica
    f[n_] := 2 Binomial[4 n + 1, n]/(3 n + 2); Array[f, 21, 0] (* Robert G. Wilson v *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/(1+x^2)^2+O(x^(2*n+2))),2*n+1)) /* Ralf Stephan */
    
  • PARI
    {a(n) =  binomial(4*n + 2, n)*2 / (2*n + 1)} /* Michael Somos, Mar 28 2012 */
    
  • PARI
    {a(n) =  local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = (1 + x * A^2)^2); polcoeff( A, n))} /* Michael Somos, Mar 28 2012 */
    

Formula

a(n) = A069270(n+1, n) = A005810(n)*A016813(n)/A060544(n+1)
O.g.f. A(x) satisfies 2*x^2*A(x)^3 = 1-2*x*A(x)-sqrt(1-4*x*A(x)). - Vladimir Kruchinin, Feb 23 2011
a(n) is the sum of top row terms in M^n, where M is the infinite square production matrix with the triangular series in each column as follows, with the rest zeros:
1, 1, 0, 0, 0, 0, ...
3, 3, 1, 0, 0, 0, ...
6, 6, 3, 1, 0, 0, ...
10, 10, 6, 3, 1, 0, ...
15, 15, 10, 6, 3, 1, ...
... - Gary W. Adamson, Aug 11 2011
Given g.f. A(x) then B(x) = x * A(x^2) satisfies x = B(x) / (1 + B(x)^2)^2. - Michael Somos, Mar 28 2012
Given g.f. A(x) then A(x) = (1 + x * A(x)^2)^2. - Michael Somos, Mar 28 2012
a(n) / (n+1) = A000260(n). - Michael Somos, Mar 28 2012
REVERT transform is A115141. - Michael Somos, Mar 28 2012
D-finite with recurrence 3*n*(3*n+2)*(3*n+1)*a(n) - 8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Jun 07 2013
a(n) = 2*binomial(4n+1,n-1)/n for n>0, a(0)=1. - Bruno Berselli, Jan 19 2014
G.f.: hypergeom([1/2, 3/4, 5/4], [4/3, 5/3], (256/27)*x). - Robert Israel, Aug 24 2014
From Peter Bala, Oct 08 2015: (Start)
O.g.f. A(x) = (1/x) * series reversion (x/C(x)^2), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A163456.
(1/2)*x*A'(x)/A(x) is the o.g.f. for A224274. (End)
E.g.f.: hypergeom([1/2, 3/4, 5/4], [1, 4/3, 5/3], (256/27)*x). - Karol A. Penson, Jun 26 2017
a(n) = binomial(4*n+2,n)/(2*n+1). - Alexander Burstein, Nov 08 2021

A156064 Inverse of Riordan array (1/(1-x^4), x/(1-x^4)), A156062.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, -2, 0, 0, 0, 1, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, -4, 0, 0, 0, 1, 4, 0, 0, 0, -5, 0, 0, 0, 1, 0, 9, 0, 0, 0, -6, 0, 0, 0, 1, 0, 0, 15, 0, 0, 0, -7, 0, 0, 0, 1, 0, 0, 0, 22, 0, 0, 0, -8, 0, 0, 0, 1, -22, 0, 0, 0, 30, 0, 0, 0, -9, 0, 0, 0, 1, 0, -52, 0, 0, 0, 39
Offset: 0

Views

Author

Paul Barry, Oct 20 2009

Keywords

Comments

Reverse and aerate A069270. First column is signed aerated version of A002293. Diagonal sums are A156065.

Examples

			Triangle begins
    1;
    0,  1;
    0,  0,  1;
    0,  0,  0,  1;
   -1,  0,  0,  0,  1;
    0, -2,  0,  0,  0,  1;
    0,  0, -3,  0,  0,  0,  1;
    0,  0,  0, -4,  0,  0,  0,  1;
    4,  0,  0,  0, -5,  0,  0,  0,  1;
    0,  9,  0,  0,  0, -6,  0,  0,  0,  1;
    0,  0, 15,  0,  0,  0, -7,  0,  0,  0,  1;
    0,  0,  0, 22,  0,  0,  0, -8,  0,  0,  0,  1;
  -22,  0,  0,  0, 30,  0,  0,  0, -9,  0,  0,  0,  1;
Production matrix is
   0,  1;
   0,  0,  1;
   0,  0,  0,  1;
  -1,  0,  0,  0,  1;
   0, -1,  0,  0,  0,  1;
   0,  0, -1,  0,  0,  0,  1;
   0,  0,  0, -1,  0,  0,  0,  1;
   0,  0,  0,  0, -1,  0,  0,  0,  1;
   0,  0,  0,  0,  0, -1,  0,  0,  0,  1;
   0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  0,  1;
		
Showing 1-3 of 3 results.