A069269 Second level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 3rd level is A069270).
1, 1, 1, 1, 2, 3, 1, 3, 7, 12, 1, 4, 12, 30, 55, 1, 5, 18, 55, 143, 273, 1, 6, 25, 88, 273, 728, 1428, 1, 7, 33, 130, 455, 1428, 3876, 7752, 1, 8, 42, 182, 700, 2448, 7752, 21318, 43263, 1, 9, 52, 245, 1020, 3876, 13566, 43263, 120175, 246675
Offset: 0
Examples
Rows start 1; 1, 1; 1, 2, 3; 1, 3, 7, 12; 1, 4, 12, 30, 55;
Links
- M. H. Albert et al., Restricted permutations and queue jumping, Discrete Math., 287 (2004), 129-133.
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 18.
Crossrefs
Formula
T(n, k) = C(n+2k, k)*(n-k+1)/(n+k+1).
For n >= k+2: T(n, k) = T(n-1, k+1) - T(n-2, k+1).
T(n, n) = T(n+1, n-1) = C(3n, n)/(2n+1).
Comments