A069270
Third level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 2nd level is A069269).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 9, 22, 1, 4, 15, 52, 140, 1, 5, 22, 91, 340, 969, 1, 6, 30, 140, 612, 2394, 7084, 1, 7, 39, 200, 969, 4389, 17710, 53820, 1, 8, 49, 272, 1425, 7084, 32890, 135720, 420732, 1, 9, 60, 357, 1995, 10626, 53820, 254475, 1068012, 3362260
Offset: 0
Rows start
1;
1, 1;
1, 2, 4;
1, 3, 9, 22;
1, 4, 15, 52, 140;
etc.
-
A069270 := proc(n,k)
binomial(n+3*k,k)*(n-k+1)/(n+2*k+1) ;
end proc: # R. J. Mathar, Oct 11 2015
-
Table[Binomial[n + 3 k, k] (n - k + 1)/(n + 2 k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 27 2019 *)
A110616
A convolution triangle of numbers based on A001764.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 12, 7, 3, 1, 55, 30, 12, 4, 1, 273, 143, 55, 18, 5, 1, 1428, 728, 273, 88, 25, 6, 1, 7752, 3876, 1428, 455, 130, 33, 7, 1, 43263, 21318, 7752, 2448, 700, 182, 42, 8, 1, 246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1
Offset: 0
Triangle begins:
1;
1, 1;
3, 2, 1;
12, 7, 3, 1;
55, 30, 12, 4, 1;
273, 143, 55, 18, 5, 1;
1428, 728, 273, 88, 25, 6, 1;
7752, 3876, 1428, 455, 130, 33, 7, 1;
43263, 21318, 7752, 2448, 700, 182, 42, 8, 1;
246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1;
...
From _Peter Bala_, Feb 04 2025: (Start)
The transposed array factorizes as an infinite product of upper triangular arrays:
/ 1 \^T /1 \^T /1 \^T / 1 \^T
| 1 1 | | 1 1 | | 0 1 | | 0 1 |
| 3 2 1 | = | 2 1 1 | | 0 1 1 | | 0 0 1 | ...
|12 7 3 1 | | 5 2 1 1 | | 0 2 1 1 | | 0 0 1 1 |
|55 30 12 4 1| |14 5 2 1 1| | 0 5 2 1 1 | | 0 0 2 1 1 |
|... | |... | |... | |... |
where T denotes transposition and [1, 1, 2, 5, 14,...] is the sequence of Catalan numbers A000108. (End)
- Peter Bala, Factorisations of some Riordan arrays as infinite products
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 27, 29.
- Paul Barry, d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths, arXiv:2505.16718 [math.CO], 2025. See p. 21.
- Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- Sheng-Liang Yang and L. J. Wang, Taylor expansions for the m-Catalan numbers, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431.
-
Table[(k + 1) Binomial[3 n - 2 k, 2 n - k]/(2 n - k + 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 28 2017 *)
-
T(n,k):=((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1); /* Vladimir Kruchinin, Nov 01 2011 */
A215919
a(n) = -3*a(n-1) + a(n-3), with a(0)=0, a(1)=-3, a(2)=12.
Original entry on oeis.org
0, -3, 12, -36, 105, -303, 873, -2514, 7239, -20844, 60018, -172815, 497601, -1432785, 4125540, -11879019, 34204272, -98487276, 283582809, -816544155, 2351145189, -6769852758, 19493014119, -56127897168, 161613838746, -465348502119, 1339917609189, -3858138988821
Offset: 0
We have a(2)=-4*a(1), a(3)=-3*a(2), a(6)/a(3) = -24.25, and a(9) = 579*a(3).
- D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
- R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).
-
LinearRecurrence[{-3, 0, 1}, {0, -3, 12}, 50]
Showing 1-3 of 3 results.
Comments