A343450 Integers whose nonincreasing digits are at most one more than their position.
1, 2, 11, 21, 22, 31, 32, 111, 211, 221, 222, 311, 321, 322, 331, 332, 411, 421, 422, 431, 432, 1111, 2111, 2211, 2221, 2222, 3111, 3211, 3221, 3222, 3311, 3321, 3322, 3331, 3332, 4111, 4211, 4221, 4222, 4311, 4321, 4322, 4331, 4332, 4411, 4421, 4422, 4431, 4432
Offset: 1
Examples
'1' and '2' are the 2 triangulated planar polygons on 4 vertices (TPP4). '11, 21, 22, 31, 32' are the 5 TPP5. The next group with 3 digits gives the 14 TPP6, and so on, following the Catalan numbers 2, 5, 14, 42, ... (see A000108). Additionally, the numbers of d-digit terms with the same starting digit reflect the numbers in the d-th row of Catalan's triangle, A009766 (e.g., 1 two-digit number starting with '1', 2 starting with '2' and 2 starting with '3'). The 1111...'s are fan-TPP's with the top in vertex 1 (between edge 0 and 1), and 98765432 is also, but with the top in the last vertex.
Links
- Tom Davis, Catalan Numbers, 2016.
- F. Hurtado and M. Noy, Graph of triangulations of a convex polygon and tree of triangulations, 1999.
- Richard P. Stanley, Catalan Addendum, 2013.
Programs
-
Mathematica
okQ[digits_List] := AllTrue[MapIndexed[#1 <= #2[[1]]+1&, Reverse[digits]], #&]; row[n_] := Module[{i, iter}, i[0] = n+1; iter = Table[{i[k+1], i[k]}, {k, 0, n-1}]; Table[Array[i, n], Evaluate[Sequence @@ iter]] // Flatten[#, n-1]&]; T[n_] := FromDigits /@ Select[row[n], okQ]; Table[T[n], {n, 1, 4}] // Flatten (* Jean-François Alcover, May 08 2021 *)
Comments