A107112
Row sums of A107111, viewed as a number triangle.
Original entry on oeis.org
1, 2, 5, 15, 54, 228, 1106, 6069, 37212, 252287, 1873928, 15127191, 131788320, 1231650843, 12283477562, 130137706957, 1458823402224, 17242265101407, 214202486482516, 2789239633559763, 37974772474452740, 539356744121554370
Offset: 0
A107113
Diagonal sums of A107111, viewed as a number triangle.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 24, 52, 125, 307, 809, 2190, 6249, 18348, 56016, 176272, 571113, 1906091, 6517283, 22879944, 82144248, 301617448, 1131401427, 4327790902, 16886037207, 67073179408, 271242546501, 1115489848809, 4662462489619
Offset: 0
A007297
Number of connected graphs on n labeled nodes on a circle with straight-line edges that don't cross.
Original entry on oeis.org
1, 1, 4, 23, 156, 1162, 9192, 75819, 644908, 5616182, 49826712, 448771622, 4092553752, 37714212564, 350658882768, 3285490743987, 30989950019532, 294031964658430, 2804331954047160, 26870823304476690, 258548658860327880
Offset: 1
G.f. = x*(1 + x + 4*x^2 + 23*x^3 + 156*x^4 + 1162*x^5 + 9192*x^6 + 75819*x^7 + ...).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 1..999 (first 101 terms from T. D. Noe)
- M. Aguiar and J.-L. Loday, Quadri-algebras, J. Pure Appl. Algebra, 191 (2004), 205-221.
- R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
- P. Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, 2012, article 12.4.2. - From _N. J. A. Sloane_, Sep 21 2012
- F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
- F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
- E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
- C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358 (column sums in Table 2).
- Michael Drmota, Anna de Mier, Marc Noy, Extremal statistics on non-crossing configurations, Discrete Math. 327 (2014), 103--117. MR3192420. See Eq. (3). - N. J. A. Sloane, May 18 2014
- Guillermo Esteban, Clemens Huemer, Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020.
- Sen-Peng Eu, Shu-Chung Liu and Yeong-Nan Yeh, On the congruences of some combinatorial numbers, Stud. Appl. Math. vol. 116 (2006) pp. 135-144.
- P. Flajolet and M. Noy, Analytic Combinatorics of Non-crossing Configurations
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 486.
- Loïc Foissy, Free quadri-algebras and dual quadri-algebras, arXiv:1504.06056 [math.CO], 2015.
- I. M. Gessel, A short proof of the Deutsch-Sagan congruence for connected non crossing graphs, arXiv preprint arXiv:1403.7656 [math.CO], 2014.
- Marco Kuhlmann, Tabulation of Noncrossing Acyclic Digraphs, arXiv:1504.04993 [cs.DS], 2015.
- M. Kuhlmann, P. Jonsson, Parsing to Noncrossing Dependency Graphs, Transactions of the Association for Computational Linguistics, vol. 3, pp. 559-570, 2015.
- Sara Madariaga, Gröbner-Shirshov bases for the non-symmetric operads of dendriform algebras and quadri-algebras, arXiv:1304.5184 [math.RA], 2013.
- B. Vallette, Manin products, Koszul duality, Loday algebras and Deligne conjecture, arXiv:math/0609002 [math.QA], 2006-2007; J. Reine Angew. Math. 620 (2008), 105-164.
- Gus Wiseman, The a(5) = 156 connected non-crossing graphs.
- Gus Wiseman, Constructive Mathematica program for A007297.
- Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.
- Index entries for reversions of series
Cf.
A000108 (non-crossing set partitions),
A001006,
A001187,
A054726 (non-crossing graphs),
A054921,
A099947,
A194560,
A293510,
A323818,
A324167,
A324169,
A324173.
-
A007297:=proc(n) if n = 1 then 1 else add(binomial(3*n - 3, n + j)*binomial(j - 1, j - n + 1), j = n - 1 .. 2*n - 3)/(n - 1); fi; end;
-
CoefficientList[ InverseSeries[ Series[(x-x^2)/(1+x)^3, {x, 0, 20}], x], x] // Rest (* From Jean-François Alcover, May 19 2011, after PARI prog. *)
Table[Binomial[3n, 2n+1] Hypergeometric2F1[1-n, n, 2n+2, -1]/n, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
-
a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x)^3+O(x^(n+2))),n+1)) /* Ralf Stephan */
Definition revised and initial a(1)=1 added by
N. J. A. Sloane, Nov 05 2015 at the suggestion of
Axel Boldt. Some of the formulas may now need to be adjusted slightly.
A143689
a(n) = (3*n^2 - n + 2)/2.
Original entry on oeis.org
1, 2, 6, 13, 23, 36, 52, 71, 93, 118, 146, 177, 211, 248, 288, 331, 377, 426, 478, 533, 591, 652, 716, 783, 853, 926, 1002, 1081, 1163, 1248, 1336, 1427, 1521, 1618, 1718, 1821, 1927, 2036, 2148, 2263, 2381, 2502, 2626, 2753, 2883, 3016, 3152, 3291
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- D. Bevan, D. Levin, P. Nugent, J. Pantone, and L. Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036 [math.CO], 2015-2016.
- John Elias, Trisected Pentagonal Numbers
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
a143689 n = n*(3*n-1) `div` 2 + 1 -- Reinhard Zumkeller, May 11 2014
-
Table[(3n^2-n+2)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,2,6},50] (* Harvey P. Dale, May 05 2014 *)
-
makelist(binomial(n, 2) + n^2 + 1, n, 0, 100); /* Franck Maminirina Ramaharo, Mar 01 2018 */
-
a(n)=(3*n^2-n+2)/2 \\ Charles R Greathouse IV, Oct 07 2015
A365754
Expansion of (1/x) * Series_Reversion( x*(1-x)/(1+x)^4 ).
Original entry on oeis.org
1, 5, 36, 305, 2833, 27916, 286632, 3033513, 32858595, 362515725, 4059475368, 46021411644, 527163783916, 6092053249160, 70939443268112, 831558454663449, 9804617762941095, 116201796106426543, 1383557994261012100, 16541672701743657545, 198510770031798279825
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+k, k)*binomial(4*(n+1), n-k))/(n+1);
A365755
Expansion of (1/x) * Series_Reversion( x*(1-x)/(1+x)^5 ).
Original entry on oeis.org
1, 6, 52, 530, 5919, 70098, 864784, 10994490, 143042020, 1895316632, 25487708844, 346976558318, 4772478619146, 66222166440780, 925880434336320, 13030945427540170, 184467676431001644, 2624828100099166536, 37521220349342729680, 538573138719587026440
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+k, k)*binomial(5*(n+1), n-k))/(n+1);
A345462
Triangle T(n,k) (n >= 1, 0 <= k <= n-1) read by rows: number of distinct permutations after k steps of the "first transposition" algorithm.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 24, 13, 4, 1, 120, 67, 23, 5, 1, 720, 411, 146, 36, 6, 1, 5040, 2921, 1067, 272, 52, 7, 1, 40320, 23633, 8800, 2311, 456, 71, 8, 1, 362880, 214551, 81055, 21723, 4419, 709, 93, 9, 1, 3628800, 2160343, 825382, 224650, 46654, 7720, 1042, 118, 10, 1
Offset: 1
Triangle begins:
1;
2, 1;
6, 3, 1;
24, 13, 4, 1;
120, 67, 23, 5, 1;
720, 411, 146, 36, 6, 1;
5040, 2921, 1067, 272, 52, 7, 1;
40320, 23633, 8800, 2311, 456, 71, 8, 1;
...
- D. E. Knuth, The Art of Computer Programming, Vol. 3 / Sorting and Searching, Addison-Wesley, 1973.
Cf.
A107111 a triangle with some common parts.
-
b:= proc(n, k) option remember; (k+1)!*
binomial(n, k)*add((-1)^i/i!, i=0..k+1)/n
end:
T:= proc(n, k) option remember;
`if`(k=0, n!, T(n, k-1)-b(n, n-k+1))
end:
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Aug 11 2021
-
b[n_, k_] := b[n, k] = (k+1)!*Binomial[n, k]*Sum[(-1)^i/i!, {i, 0, k+1}]/n;
T[n_, k_] := T[n, k] = If[k == 0, n!, T[n, k-1] - b[n, n-k+1]];
Table[Table[T[n, k], {k, 0, n - 1}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)
A366012
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(n*(n+1),n-k).
Original entry on oeis.org
1, 2, 13, 156, 2833, 70098, 2214280, 85464984, 3906724321, 206648387550, 12425282899588, 837384222603448, 62539219710804627, 5127758187193514824, 457986530357734020432, 44263628968974498793648, 4602969726808566383149761, 512486177498084438210961270, 60827938291895363867587959628
Offset: 0
-
Table[1/(n + 1) Sum[Binomial[n + k, n] Binomial[n (n + 1), n - k], {k, 0, n}], {n, 0, 18}]
Table[SeriesCoefficient[(1/x) InverseSeries[Series[x (1 - x)/(1 + x)^n, {x, 0, n + 1}], x], {x, 0, n}], {n, 0, 18}]
Showing 1-8 of 8 results.
Comments