cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 48 results. Next

A000699 Number of irreducible chord diagrams with 2n nodes.

Original entry on oeis.org

1, 1, 1, 4, 27, 248, 2830, 38232, 593859, 10401712, 202601898, 4342263000, 101551822350, 2573779506192, 70282204726396, 2057490936366320, 64291032462761955, 2136017303903513184, 75197869250518812754, 2796475872605709079512, 109549714522464120960474, 4509302910783496963256400, 194584224274515194731540740
Offset: 0

Views

Author

Keywords

Comments

Perturbation expansion in quantum field theory: spinor case in 4 spacetime dimensions.
a(n)*2^(-n) is the coefficient of the x^(2*n-1) term in the series reversal of the asymptotic expansion of 2*DawsonF(x) = sqrt(Pi)*exp(-x^2)*erfi(x) for x -> inf. - Vladimir Reshetnikov, Apr 23 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
A set partition is topologically connected if the graph whose vertices are the blocks and whose edges are crossing pairs of blocks is connected, where two blocks cross each other if they are of the form {{...x...y...},{...z...t...}} for some x < z < y < t or z < x < t < y. Then a(n) is the number of topologically connected 2-uniform set partitions of {1...2n}. See my links for examples. - Gus Wiseman, Feb 23 2019
From Julien Courtiel, Oct 09 2024: (Start)
a(n) is the number of rooted bridgeless combinatorial maps with n edges (genus is not fixed). A map is bridgeless if it has no edge whose removal disconnects the graph. For example, for n=2, there are 4 bridgeless maps with 2 edges: 2 planar maps with 1 vertex (either two consecutive loops, or two nested loops), 1 toric map with 1 vertex, and 1 planar map with 2 vertices connected by a double edge.
Also, a(n) is the number of trees with n edges equipped with a binary tubing. A tube is a connected subgraph. A binary tubing of a tree is a nested set collection S of tubes such that 1. S contains the tube of all vertices 2. Every tube of S is either reduced to one vertex, or it can be can partitioned by 2 tubes of S.
(End)

Examples

			a(31)=627625976637472254550352492162870816129760 was computed using Kreimer's Hopf algebra of rooted trees. It subsumes 2.6*10^21 terms in quantum field theory.
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 27*x^4 + 248*x^5 + 2830*x^6 +...
where d/dx (A(x) - 1)^2/x = 1 + 4*x + 27*x^2 + 248*x^3 + 2830*x^4 +...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Cf. A004300, A051862, A212273. Column sums of A232223. First column of A322402.

Programs

  • Maple
    A000699 := proc(n)
        option remember;
        if n <= 1 then
            1;
        else
            add((2*i-1)*procname(i)*procname(n-i),i=1..n-1) ;
        end if;
    end proc:
    seq(A000699(n),n=0..30) ; # R. J. Mathar, Jun 12 2018
  • Mathematica
    terms = 22; A[] = 0; Do[A[x] = x + x^2 * D[A[x]^2/x, x] + O[x]^(terms+1) // Normal, terms]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Apr 06 2012, after Paul D. Hanna, updated Jan 11 2018 *)
    a = ConstantArray[0,20]; a[[1]]=1; Do[a[[n]] = (n-1)*Sum[a[[i]]*a[[n-i]],{i,1,n-1}],{n,2,20}]; a (* Vaclav Kotesovec, Feb 22 2014 *)
    Module[{max = 20, s}, s = InverseSeries[ComplexExpand[Re[Series[2 DawsonF[x], {x, Infinity, 2 max + 1}]]]]; Table[SeriesCoefficient[s, 2 n - 1] 2^n, {n, 1, max}]] (* Vladimir Reshetnikov, Apr 23 2016 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n)); for(i=1, n, A=1+x+x^2*deriv((A-1)^2/x)+x*O(x^n)); polcoeff(A, n)} \\ Paul D. Hanna, Dec 31 2010 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020]
    
  • PARI
    {a(n) = my(A); A = 1+O(x) ; for( i=0, n, A = 1+x + (A-1)*(2*x*A' - A + 1)); polcoeff(A, n)}; /* Michael Somos, May 12 2012 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020] */
    
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(22)  \\ Gheorghe Coserea, Jan 22 2017
    
  • PARI
    seq(n)={my(g=serlaplace(1 / sqrt(1 - 2*x + O(x*x^n)))); Vec(sqrt((x/serreverse( x*g^2 ))))} \\ Andrew Howroyd, Nov 21 2024
    
  • Python
    def A000699_list(n):
        list = [1, 1] + [0] * (n - 1)
        for i in range(2, n + 1):
            list[i] = (i - 1) * sum(list[j] * list[i - j] for j in range(1, i))
        return list
    print(A000699_list(22)) # M. Eren Kesim, Jun 23 2021

Formula

a(n) = (n-1)*Sum_{i=1..n-1} a(i)*a(n-i) for n > 1, with a(1) = a(0) = 1. [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020]
A212273(n) = n * a(n). - Michael Somos, May 12 2012
G.f. satisfies: A(x) = 1 + x + x^2*[d/dx (A(x) - 1)^2/x]. - Paul D. Hanna, Dec 31 2010 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020]
a(n) ~ n^n * 2^(n+1/2) / exp(n+1) * (1 - 31/(24*n) - 2207/(1152*n^2) - 3085547/(414720*n^3) - 1842851707/(39813120*n^4) - ...). - Vaclav Kotesovec, Feb 22 2014, extended Oct 23 2017
G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2*x/(A(x) - 3*x/(A(x) - 4*x/(A(x) - 5*x/(A(x) - ...))))), a continued fraction relation. - Paul D. Hanna, Nov 04 2020
G.f. A(x) satisfies: A(x*B(x)^2) = B(x) where B(x) is the g.f. of A001147. - Andrew Howroyd, Nov 21 2024

Extensions

More terms from David Broadhurst, Dec 14 1999
Inserted "chord" in definition. - N. J. A. Sloane, Jan 19 2017
Added a(0)=1. - N. J. A. Sloane, Nov 05 2020
Modified formulas slightly to include a(0) = 1. - Paul D. Hanna, Nov 06 2020

A054726 Number of graphs with n nodes on a circle without crossing edges.

Original entry on oeis.org

1, 1, 2, 8, 48, 352, 2880, 25216, 231168, 2190848, 21292032, 211044352, 2125246464, 21681954816, 223623069696, 2327818174464, 24424842461184, 258054752698368, 2742964283768832, 29312424612462592, 314739971287154688, 3393951437605044224, 36739207546043105280
Offset: 0

Views

Author

Philippe Flajolet, Apr 20 2000

Keywords

Comments

Related to Schröder's second problem.
A001006 gives number of ways of drawing any number of nonintersecting chords between n points on a circle, while this sequence gives number of ways of drawing noncrossing chords between n points on a circle. The difference is that nonintersection chords have no point in common, while noncrossing chords may share an endpoint. - David W. Wilson, Jan 30 2003
For n>0, a(n) = number of lattice paths from (0,0) to (n-1,n-1) that consist of steps (i,j), i,j nonnegative integers not both 0 and that stay strictly below the line y=x except at their endpoints. For example, a(3)=8 counts the paths with following step sequences: {(2, 2)}, {(2, 1), (0, 1)}, {(2, 0), (0, 2)}, {(2, 0), (0, 1), (0, 1)}, {(1, 0), (1, 2)}, {(1, 0), (1, 1), (0, 1)}, {(1, 0), (1, 0), (0, 2)}, {(1, 0), (1, 0), (0, 1), (0, 1)}. If the word "strictly" is replaced by "weakly", the counting sequence becomes A059435. - David Callan, Jun 07 2006
The nodes on the circle are distinguished by their positions but are otherwise unlabeled. - Lee A. Newberg, Aug 09 2011
From Gus Wiseman, Jun 22 2019: (Start)
Conjecture: Also the number of simple graphs with vertices {1..n} not containing any pair of nesting edges. Two edges {a,b}, {c,d} where a < b and c < d are nesting if a < c and b > d or a > c and b < d. For example, the a(0) = 1 through a(3) = 8 non-nesting edge-sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
(End)

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Cf. A000108 (non-crossing set partitions), A000124, A006125, A007297 (connected case), A194560, A306438, A324167, A324169 (covering case), A324173, A326210.

Programs

  • Maple
    with(combstruct): br:= {EA = Union(Sequence(EA, card >= 2), Prod(V, Sequence(EA), Sequence(EA))), V=Union(Prod(Z, G)), G=Union(Epsilon, Prod(Z, G), Prod(V,V,Sequence(EA), Sequence(EA), Sequence(Union(Sequence(EA,card>=1), Prod(V,Sequence(EA),Sequence(EA)))))) }; ggSeq := [seq(count([G, br], size=i), i=0..20)];
  • Mathematica
    Join[{a = 1, b = 1}, Table[c = (6*(2*n - 3)*b)/n - (4*(n - 3) a)/n; a = b; b = c, {n, 1, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    nn=8;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xGus Wiseman, Feb 19 2019 *)
  • PARI
    z='z+O('z^66); Vec( 1+3/2*z-z^2-z/2*sqrt(1-12*z+4*z^2) ) \\ Joerg Arndt, Mar 01 2014

Formula

a(n) = 2^n*A001003(n-2) for n>2.
From Lee A. Newberg, Aug 09 2011: (Start)
G.f.: 1 + (3/2)*z - z^2 - (z/2)*sqrt(1 - 12*z + 4*z^2);
D-finite with recurrence: a(n) = ((12*n-30)*a(n-1) - (4*n-16)*a(n-2)) / (n-1) for n>1. (End)
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 11 2012, simplified Dec 24 2017
a(n) = 2^(n-2) * (Legendre_P(n-1, 3) - Legendre_P(n-3, 3))/(2*n - 3) = 2^n * (Legendre_P(n-1, 3) - 3*Legendre_P(n-2, 3))/(4*n - 8), both for n >= 3. - Peter Bala, May 06 2024

Extensions

Offset changed to 0 by Lee A. Newberg, Aug 03 2011

A099947 Number of topologically connected set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 21, 85, 385, 1907, 10205, 58455, 355884, 2290536, 15518391, 110283179, 819675482, 6355429550, 51293023347, 430062712439, 3739408304962, 33665192703946, 313354708842791, 3011545611755271, 29847401178719637, 304713973031878687, 3201007359886598431
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2004

Keywords

Comments

A set partition of {1,...,n} is topologically connected if the graph whose vertices are the blocks and whose edges are crossing pairs of blocks is connected, where two blocks cross each other if they are of the form {{...x...y...}, {...z...t...}} for some x < z < y < t or z < x < t < y. - Gus Wiseman, Feb 19 2019

Examples

			O.g.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 21*x^6 + 85*x^7 +...
From _Paul D. Hanna_, Apr 16 2013: (Start)
The o.g.f. satisfies
(1) A(x) = 1 + x/A(x) + 2*x^2/A(x)^2 + 5*x^3/A(x)^3 + 15*x^4/A(x)^4 + 52*x^5/A(x)^5 + 203*x^6/A(x)^6 + ... + A000110(n)*x^n/A(x)^n + ...
(2) A(x) = 1 + x/(A(x)-x) + x^2/((A(x)-x)*(A(x)-2*x)) + x^3/((A(x)-x)*(A(x)-2*x)*(A(x)-3*x)) + x^4/((A(x)-x)*(A(x)-2*x)*(A(x)-3*x)*(A(x)-4*x)) + ... (End)
From _Gus Wiseman_, Feb 19 2019: (Start)
The a(1) = 1 through a(6) = 21 topologically connected set partitions:
  {{1}}  {{12}}  {{123}}  {{1234}}    {{12345}}    {{123456}}
                          {{13}{24}}  {{124}{35}}  {{1235}{46}}
                                      {{13}{245}}  {{124}{356}}
                                      {{134}{25}}  {{1245}{36}}
                                      {{135}{24}}  {{1246}{35}}
                                      {{14}{235}}  {{125}{346}}
                                                   {{13}{2456}}
                                                   {{134}{256}}
                                                   {{1345}{26}}
                                                   {{1346}{25}}
                                                   {{135}{246}}
                                                   {{1356}{24}}
                                                   {{136}{245}}
                                                   {{14}{2356}}
                                                   {{145}{236}}
                                                   {{146}{235}}
                                                   {{15}{2346}}
                                                   {{13}{25}{46}}
                                                   {{14}{25}{36}}
                                                   {{14}{26}{35}}
                                                   {{15}{24}{36}}
(End)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Module[{A = 1 + x}, For[i = 1, i <= n, i++, A = Sum[x^m/Product[A - k*x + x*O[x]^n, {k, 1, m}], {m, 0, n}]]; Coefficient[A, x^n]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 13 2013, after Paul D. Hanna *)
    nn=8;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Solve[Table[BellB[n]==Sum[Product[a[Length[s]],{s,stn}],{stn,Select[sps[Range[n]],nonXQ]}],{n,nn}],Array[a,nn]] (* Gus Wiseman, Feb 19 2019 *)
  • PARI
    {a(n)=if(n<0, 0, polcoeff( x/serreverse(x*serlaplace(exp(exp(x+x*O(x^n))-1))), n))} /* Michael Somos, Sep 22 2005 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/prod(k=1, m, A - k*x +x*O(x^n)) )); polcoeff(A, n)} \\ Paul D. Hanna, Apr 16 2013

Formula

From Paul D. Hanna, Apr 16 2013: (Start)
O.g.f. A(x) satisfies
(1) A(x) = Sum_{n>=0} A000110(n)*x^n/A(x)^n, where A000110 are the Bell numbers.
(2) A(x) = Sum_{n>=0} x^n / Product_{k=1..n} (A(x) - k*x).
(3) A(x) = 1/(1 - x/(A(x) - 1*x/(1 - x/(A(x) - 2*x/(1 - x/(A(x) - 3*x/(1 - x/(A(x) - 4*x/(1 - x/(A(x) - ... )))))))))), a continued fraction. (End)
B(n) = Sum_p Product_{s in p} a(|s|) where p is a non-crossing set partition of {1,...,n} and B = A000110. In words, every set partition of {1,...,n} can be uniquely decomposed as a non-crossing set partition together with a topologically connected set partition of each block. - Gus Wiseman, Feb 19 2019

Extensions

Name edited by Gus Wiseman, Feb 19 2019

A324169 Number of labeled graphs covering the vertex set {1,...,n} with no crossing edges.

Original entry on oeis.org

1, 0, 1, 4, 25, 176, 1353, 11012, 93329, 815104, 7285489, 66324644, 612863337, 5733381616, 54195878137, 516852285668, 4966883732129, 48049936644736, 467566946973537, 4573486005681092, 44942852084894777, 443484037981300144, 4392621673072766505
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

Two edges {x,y}, {z,t} are crossing if either x < z < y < t or z < x < t < y. If the vertices are arranged in a circle, this is equivalent to crossing of chords.
Covering means there are no isolated vertices.

Crossrefs

Cf. A000108, A000124, A001006, A001764, A003465, A007297 (connected case), A016098, A054726 (non-crossing graphs), A099947, A306438.

Programs

  • Mathematica
    nn=8;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)=Vec((2 + 7*x + 3*x^2 - x*sqrt(1 - 10*x - 7*x^2 + O(x^n)))/(2*(1 + x)^3)) \\ Andrew Howroyd, Jan 20 2023

Formula

Inverse binomial transform of A054726.
G.f.: (2 + 7*x + 3*x^2 - x*sqrt(1 - 10*x - 7*x^2))/(2*(1 + x)^3). - Andrew Howroyd, Jan 20 2023

A324173 Regular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with k topologically connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 2, 6, 6, 1, 0, 6, 15, 20, 10, 1, 0, 21, 51, 65, 50, 15, 1, 0, 85, 203, 252, 210, 105, 21, 1, 0, 385, 912, 1120, 938, 560, 196, 28, 1, 0, 1907, 4527, 5520, 4620, 2898, 1302, 336, 36, 1, 0, 10205, 24370, 29700, 24780, 15792, 7812, 2730, 540, 45, 1
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A set partition is crossing if it contains a pair of blocks of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
The topologically connected components of a set partition correspond to the blocks of its minimal non-crossing coarsening.

Examples

			Triangle begins:
     1
     0     1
     0     1     1
     0     1     3     1
     0     2     6     6     1
     0     6    15    20    10     1
     0    21    51    65    50    15     1
     0    85   203   252   210   105    21     1
     0   385   912  1120   938   560   196    28     1
     0  1907  4527  5520  4620  2898  1302   336    36     1
     0 10205 24370 29700 24780 15792  7812  2730   540    45     1
Row n = 4 counts the following set partitions:
  {{1234}}    {{1}{234}}  {{1}{2}{34}}  {{1}{2}{3}{4}}
  {{13}{24}}  {{12}{34}}  {{1}{23}{4}}
              {{123}{4}}  {{12}{3}{4}}
              {{124}{3}}  {{1}{24}{3}}
              {{134}{2}}  {{13}{2}{4}}
              {{14}{23}}  {{14}{2}{3}}
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]==k&]],{n,0,8},{k,0,n}]

A091527 a(n) = ((3*n)!/n!^2)*(Gamma(1+n/2)/Gamma(1+3n/2)).

Original entry on oeis.org

1, 4, 30, 256, 2310, 21504, 204204, 1966080, 19122246, 187432960, 1848483780, 18320719872, 182327718300, 1820797698048, 18236779032600, 183120225632256, 1842826521244230, 18581317012684800, 187679234340049620, 1898554215471513600, 19232182592635611060
Offset: 0

Views

Author

Michael Somos, Jan 18 2004

Keywords

Comments

Sequence terms are given by [x^n] ( (1 + x)^(k+2)/(1 - x)^k )^n for k = 1. See the crossreferences for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015
Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 1, b = 0. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Cf. A061162(n) = a(2n), A007297, A000984 (k = 0), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A262733 (k = 5), A211421 (k = 6), A276098, A276099.

Programs

  • Maple
    a := n -> 4^n * `if`(n<2, 1, (2*(n+1)*binomial((3*n-1)/2, n + 1))/(n-1)):
    seq(a(n), n=0..18); # Peter Luschny, Feb 03 2020
  • Mathematica
    Table[((3 n)!/n!^2) Gamma[1 + n/2]/Gamma[1 + 3 n/2], {n, 0, 18}] (* Michael De Vlieger, Oct 02 2015 *)
    Table[4^n Sum[Binomial[k - 1 + (n - 1)/2, k], {k, 0, n}], {n, 0, 18}] (* Michael De Vlieger, Aug 28 2016 *)
  • Maxima
    B(x):=(-1/3+(2/3)*sqrt(1+9*x)*sin((1/3)*asin((2+27*x+54*x^2)/2/(1+9*x)^(3/2))))/x-1;
    taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 02 2015 */
    
  • PARI
    a(n)=4^n*sum(i=0,n,binomial(i-1+(n-1)/2,i))
    
  • PARI
    vector(30, n, sum(k=0, n, binomial(3*n-3, k)*binomial(2*n-k-3, n-k-1))) \\ Altug Alkan, Oct 04 2015
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A091527(n): return int((factorial(3*n)*factorial2(n)<Chai Wah Wu, Aug 10 2023

Formula

D-finite with recurrence n*(n - 1)*a(n) = 12*(3*n - 1)*(3*n - 5)*a(n-2).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(3*n,i) * binomial(2*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^3/(1 - x) )^n.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 4*x + 23*x^2 + 156*x^3 + 1162*x^4 + 9192*x^5 + ... is the o.g.f. for A007297 (but with an offset of 0). (End)
a(n) = (n+1)*A078531(n). [Barry, JIS (2011)]
G.f.: x*B'(x)/B(x), where x*B(x)+1 is g.f. of A007297. - Vladimir Kruchinin, Oct 02 2015
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(4*n,n-2*k)*binomial(n+k-1,k).
O.g.f.: A(x) = Hypergeom([5/6, 1/6], [1/2], 108*x^2) + 4*x*Hypergeom([4/3, 2/3], [3/2], 108*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^3/(1 - x)) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
a(n) ~ 2^n*3^(3*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Aug 22 2016
a(n) = 4^n*2*(n+1)*binomial((3*n-1)/2, n+1)/(n-1) for n >= 2. - Peter Luschny, Feb 03 2020
From Peter Bala, Mar 04 2022: (Start)
The o.g.f. A(x) satisfies the algebraic equation (1 - 108*x^2)*A(x)^3 - A(x) = 8*x. Cf. A244039.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for primes p >= 5 and positive integers n and k. (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^n).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((3*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((n+1)/2).
a(n) = [x^n] (1+4*x)^((3*n-1)/2). (End)

A136653 G.f.: A(x) satisfies: coefficient of x^n in A(x)^(n+1)/(n+1) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 1, 4, 39, 748, 27162, 1880872, 252273611, 66358216668, 34506398937158, 35644762692112792, 73356520492898454022, 301274559225693420690360, 2471654510727312089903896948, 40527708183358718551543295827536, 1328579216048284168977214446788083699
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2008

Keywords

Comments

a(n) is the number of graphs on vertices 1,...,n such that, when these vertices are arranged counterclockwise around a circle and edges are drawn as straight line segments, the resulting diagram is connected. - Jonathan Novak (j2novak(AT)math.uwaterloo.ca), Apr 30 2010
In this interpretation, both intersecting (set theoretically) and crossing (topologically) edges are considered connected. - Gus Wiseman, Feb 23 2019

Examples

			G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 39*x^4 + 748*x^5 + 27162*x^6 +...
Let F(x) = 1 + x + 2*x^2 + 8*x^3 + 64*x^4 + 1024*x^5 +...+ 2^(n*(n-1)/2)*x^n +..
then A(x) = F(x/A(x)), A(x*F(x)) = F(x).
Coefficient of x^n in A(x)^(n+1)/(n+1) = 2^(n*(n-1)/2),
as can be seen by the main diagonal in the array of
coefficients in the initial powers of A(x):
A^1: [(1), 1, 1, 4, 39, 748, 27162, 1880872, 252273611,...;
A^2: [1, (2), 3, 10, 87, 1582, 55914, 3817876, 508370795,...;
A^3: [1, 3, (6), 19, 147, 2517, 86398, 5813550, 768378627,...;
A^4: [1, 4, 10, (32), 223, 3572, 118778, 7870640, 1032387787,...;
A^5: [1, 5, 15, 50, (320), 4771, 153245, 9992130, 1300492845,...;
A^6: [1, 6, 21, 74, 444, (6144), 190023, 12181278, 1572792585,...;
A^7: [1, 7, 28, 105, 602, 7728, (229376), 14441659, 1849390375,...;
A^8: [1, 8, 36, 144, 802, 9568, 271616, (16777216), 2130394591,...;
A^9: [1, 9, 45, 192, 1053, 11718, 317112, 19192320, (2415919104),...;
dividing each diagonal term in row n by (n+1) gives 2^(n*(n-1)/2).
The diagonal above the main diagonal gives coefficients of l.g.f.:
log(F(x)) = x + 3*x^2/2 + 19*x^3/3 + 223*x^4/4 + 4771*x^5/5 +...
		

Crossrefs

Programs

  • Mathematica
    max = 15; s = x*Sum[2^(k*(k-1)/2)*x^k, {k, 0, max}] + O[x]^(max+2); x/InverseSeries[s] + O[x]^(max+1) // CoefficientList[#, x]& (* Jean-François Alcover, Sep 03 2017 *)
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    bicmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],Intersection@@#!={}&],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[bicmpts[#]]<=1]&]],{n,0,5}] (* Gus Wiseman, Feb 23 2019 *)
  • PARI
    a(n)=polcoeff(x/serreverse(x*sum(k=0,n,2^(k*(k-1)/2)*x^k +x*O(x^n))),n)

Formula

G.f.: A(x) = x/Series_Reversion( x*Sum_{k=0..n} 2^(k(k-1)/2)*x^k ).
Equals the free cumulant sequence corresponding to A006125. - Jonathan Novak (j2novak(AT)math.uwaterloo.ca), Apr 30 2010

Extensions

Name changed and part of prior name moved to formula section by Paul D. Hanna, Sep 19 2013

A326293 Number of non-nesting, topologically connected simple graphs with vertices {1..n}.

Original entry on oeis.org

1, 1, 2, 4, 8, 27, 192, 1750
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d. A graph with positive integer vertices is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Crossrefs

The inverse binomial transform is the covering case A326349.
Topologically connected simple graphs are A324328.
Non-crossing simple graphs are A054726.
Topologically connected set partitions are A099947.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]

A324171 Number of non-crossing multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 1, 4, 16, 75, 378, 2042, 11489, 66697
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers.
A multiset partition is crossing if it has a 2-element submultiset of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The A255906(5) - a(5) = 22 crossing multiset partitions:
  {{13}{124}}  {{1}{13}{24}}
  {{13}{224}}  {{1}{24}{35}}
  {{13}{234}}  {{2}{13}{24}}
  {{13}{244}}  {{2}{14}{35}}
  {{13}{245}}  {{3}{13}{24}}
  {{14}{235}}  {{3}{14}{25}}
  {{24}{113}}  {{4}{13}{24}}
  {{24}{123}}  {{4}{13}{25}}
  {{24}{133}}  {{5}{13}{24}}
  {{24}{134}}
  {{24}{135}}
  {{25}{134}}
  {{35}{124}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A001006, A001055, A001263, A007297, A054726 (non-crossing graphs), A099947, A194560, A255906 (multiset partitions of normal multisets), A306438.

Programs

  • Mathematica
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[Select[mps[m],nonXQ]],{m,allnorm[n]}],{n,0,8}]

A324327 Number of topologically connected chord graphs covering {1,...,n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 11, 257
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected, where two edges cross each other if they are of the form {{x,y},{z,t}} with x < z < y < t or z < x < t < y.
Covering means there are no isolated vertices.

Examples

			The a(0) = 1 through a(5) = 11 graphs:
  {}  {{12}}  {{13}{24}}  {{13}{14}{25}}
                          {{13}{24}{25}}
                          {{13}{24}{35}}
                          {{14}{24}{35}}
                          {{14}{25}{35}}
                          {{13}{14}{24}{25}}
                          {{13}{14}{24}{35}}
                          {{13}{14}{25}{35}}
                          {{13}{24}{25}{35}}
                          {{14}{24}{25}{35}}
                          {{13}{14}{24}{25}{35}}
		

Crossrefs

Cf. A000108, A000699 (the case with disjoint edges), A001764, A002061, A007297, A016098, A054726, A099947, A136653 (the case with set-theoretical connectedness also), A268814.
Cf. A324167, A324169 (non-crossing covers), A324172, A324173, A324323, A324328 (non-covering case).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[crosscmpts[#]]<=1]&]],{n,0,5}]

Formula

Inverse binomial transform of A324328.
Showing 1-10 of 48 results. Next