A370886 Number of Git graphs (also called Git feature branch graphs) with n vertices.
1, 1, 1, 2, 5, 13, 36, 105, 321, 1024, 3395, 11661, 41378, 151327, 569225, 2198354, 8703137, 35270825, 146143500, 618422645, 2669920997, 11749633216, 52662799223, 240219771145, 1114389479586, 5254248378467, 25163576418877, 122344307889466, 603563444819805, 3019832976420725, 15316879844905428
Offset: 0
Keywords
Examples
There are 5 Git graphs of size 5 with 3 black vertices: @---@---@ @---@---@ @---@---@ \ / \ / \ / |\ / / O O -O-O- | O / \_O_/ @---@-----@ @-----@---@ \ / \ / O-O O-O
Links
- J. Courtiel and M. Pépin, Random Generation of Git Graphs, 2024 (preprint).
Formula
Let g(n,k) be the number of Git graphs with n vertices, k of which are black. Then a(n) = Sum_{k=1..n} g(n,k).
We have:
g(n,k) = (n-1)*g(n-1,k-1) + Sum_{j>=0} (k-1)*g(n-1-j,k-1),
g(n,k) = Sum_{f=1..k-1} Stirling1(k,f)*binomial(n-k-1,k-f-1), for k < n, where Stirling1(k,f) denotes the unsigned Stirling numbers of the first kind.
g(n,n) = 1.
Comments