T(n,k) = C(2*n-1, n-k) - C(2*n-1, n-k-2), n >= 1, T(0,0) = 1.
T(n,k) = (2*k+1)*binomial(2*n,n-k)/(n+k+1).
G.f.: G(t,z)=1/(1-(1+t)*z*C), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function. (End)
The following formulas were added by
Philippe Deléham during 2003 to 2009: (Start)
Triangle T(n, k) read by rows; given by
A000012 DELTA
A000007, where DELTA is Deléham's operator defined in
A084938.
T(n, k) = C(2*n, n-k)*(2*k+1)/(n+k+1). Sum(k>=0; T(n, k)*T(m, k) =
A000108(n+m));
A000108: numbers of Catalan.
T(n, 0) =
A000108(n); T(n, k) = 0 if k>n; for k>0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*
A000108(j).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+1) where C(x) = Sum_{n>=0}
A000108(n)*x^n is g.f. for Catalan numbers,
A000108.
T(0, 0) = 1, T(n, k) = 0 if n<0 or n=1, T(n, k) = T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1).
a(n) + a(n+1) = 1 +
A000108(m+1) if n = m*(m+3)/2; a(n) + a(n+1) =
A039598(n) otherwise.
Matrix inverse of the triangle T(n, k) = (-1)^(n+k)*binomial(n+k, 2*k) = (-1)^(n+k)*
A085478(n, k).
Sum_{k=0..n} (2*k+1)*T(n, k) = 4^n.
T(n, k)*(-2)^(n-k) =
A114193(n, k).
Sum_{k>=h} T(n,k) = binomial(2n,n-h).
Sum_{k=0..n} T(n,k)*5^k =
A127628(n).
Sum_{k=0..n} T(n,k)*7^k =
A115970(n).
T(n,k) = Sum_{j=0..n-k}
A106566(n+k,2*k+j).
Sum_{k=0..n} T(n,k)*6^k =
A126694(n).
Sum_{k=0..floor(n/2)} T(n-k,k) =
A000958(n+1).
Sum_{k=0..n} T(n,k)*(-1)^k =
A000007(n).
Sum_{k=0..n} T(n,k)*(-2)^k = (-1)^n*
A064310(n).
Sum_{k=0..n} T(n,k)*(-x)^k =
A000007(n),
A126983(n),
A126984(n),
A126982(n),
A126986(n),
A126987(n),
A127017(n),
A127016(n),
A126985(n),
A127053(n) for x=1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{j>=0} T(n,j)*binomial(j,k) =
A116395(n,k).
T(n,k) = Sum_{j>=0}
A106566(n,j)*binomial(j,k).
Sum_{k=0..n} T(n,k)*sin((2*k+1)*x) = sin(x)*(2*cos(x))^(2*n).
T(n,n-k) = Sum_{j>=0} (-1)^(n-j)*
A094385(n,j)*binomial(j,k).
Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n if Sum_{k>=0} a(k)*x^k = (1+x)/(x^2-m*x+1).
Sum_{k=0..n} T(n,k)*k^2 =
A000531(n), for n>=1.
Sum{j>=0} binomial(n,j)*T(j,k)=
A124733(n,k).
Sum_{k=0..n} T(n,k)*x^(n-k) =
A000012(n),
A000984(n),
A089022(n),
A035610(n),
A130976(n),
A130977(n),
A130978(n),
A130979(n),
A130980(n),
A131521(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k=0..n} T(n,k)*(-1)^k*x^(n-k) =
A033999(n),
A000007(n),
A064062(n),
A110520(n),
A132863(n),
A132864(n),
A132865(n),
A132866(n),
A132867(n),
A132869(n),
A132897(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
T(n,2*k)+T(n,2*k+1) =
A118919(n,k).
Sum_{k=0..j} T(n,k) =
A050157(n,j).
(End)
T(n,k) = Sum_{j=0..k} binomial(k+j,2j)*(-1)^(k-j)*
A000108(n+j). -
Paul Barry, Feb 17 2011
Sum_{k=0..n} T(n,k)*(2*k+1)^2 = (4*n+1)*binomial(2*n,n). -
Werner Schulte, Jul 22 2015
Sum_{k=0..n} T(n,k)*(2*k+1)^3 = (6*n+1)*4^n. -
Werner Schulte, Jul 22 2015
Sum_{k=0..n} (-1)^k*T(n,k)*(2*k+1)^(2*m) = 0 for 0 <= m < n (see also
A160562). -
Werner Schulte, Dec 03 2015
T(n,k) = GegenbauerC(n-k,-n+1,-1) - GegenbauerC(n-k-1,-n+1,-1). -
Peter Luschny, May 13 2016
T(n,n-4) = n*(n-1)*(2*n-1)*(2*n-7)/6. -
R. J. Mathar, Jan 30 2019
T(n,n-5) = n*(n-1)*(2*n-1)*(2*n-3)*(2*n-9)/30. -
R. J. Mathar, Jan 30 2019
Comments