A115137
Second diagonal of triangle A113647 (called Y(2,1)).
Original entry on oeis.org
1, 1, 7, 41, 247, 1545, 9975, 66057, 446455, 3067913, 21372919, 150618121, 1071841271, 7691763721, 55600938999, 404488323081, 2959189475319, 21757613309961, 160691417776119, 1191577871450121, 8868160862158839
Offset: 0
41=a(3)= A062992(3) - 2*A062992(2) = 67 - 2*13.
-
CoefficientList[Series[(1-2*x)*(2*(1-Sqrt[1-8*x])/(4*x)-1)/(1+x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
A115150
Third diagonal (M=3) sequence of triangle A113647, called Y(2,1).
Original entry on oeis.org
1, 15, 113, 783, 5361, 36879, 255985, 1794063, 12689393, 90505231, 650379249, 4705157135, 34244198385, 250572963855, 1842382110705, 13605619630095, 100872203796465, 750556607938575, 5602962592235505, 41952165966643215
Offset: 0
-
CoefficientList[Series[((4*x-2+x^2)+2*(1-4*x)*(1-Sqrt[1-8*x])/(4*x))/((x^2)*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
A115153
Sixth diagonal (M=6) sequence of triangle A113647, called Y(2,1).
Original entry on oeis.org
1, 127, 1665, 16255, 141441, 1163135, 9273473, 72613759, 562430081, 4327407487, 33161347201, 253517365119, 1935665528961, 14771256557439, 112715410440321, 860346088685439, 6570305359184001, 50209563856600959, 383989436028813441
Offset: 0
-
CoefficientList[Series[((-2+16*x-24*x^2+x^5)+2*(1-10*x+24*x^2-8*x^3)*(1-Sqrt[1-8*x])/(4*x))/((x^5)*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
Original entry on oeis.org
1, 4, 21, 124, 773, 4988, 33029, 223228, 1533957, 10686460, 75309061, 535920636, 3845881861, 27800469500, 202244161541, 1479594737660, 10878806654981, 80345708888060, 595788935725061, 4434080431079420, 33109442115403781
Offset: 0
A115151
Fourth diagonal (M=4) sequence of triangle A113647, called Y(2,1).
Original entry on oeis.org
1, 31, 289, 2271, 16929, 123871, 901153, 6553567, 47759393, 349143007, 2561474593, 18860670943, 139371085857, 1033405464543, 7687240679457, 57356977176543, 429173772386337, 3219806849335263, 24215844242325537
Offset: 0
-
CoefficientList[Series[((-2+8*x+x^3)+2*(1-6*x+4*x^2)*(1-Sqrt[1-8*x])/(4*x))/((x^3)*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
A115152
Fifth diagonal (M=5) sequence of triangle A113647, called Y(2,1).
Original entry on oeis.org
1, 63, 705, 6207, 50113, 389183, 2965441, 22380607, 168132545, 1260716095, 9450356673, 70882689087, 532259536833, 4002476458047, 30145737916353, 227429364793407, 1718693633458113, 13009919057854527, 98641252341252033
Offset: 0
-
CoefficientList[Series[((-2+12*x-8*x^2+x^4)+2*(1-8*x+12*x^2)*(1-Sqrt[1-8*x])/(4*x))/((x^4)*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
A333565
O.g.f.: (1 + 4*x)/((1 + x)*sqrt(1 - 8*x)).
Original entry on oeis.org
1, 7, 33, 223, 1537, 11007, 80385, 595455, 4456449, 33615871, 255148033, 1946337279, 14908784641, 114597822463, 883479412737, 6828492980223, 52895475040257, 410544577183743, 3191929428770817, 24855137310736383, 193811815161921537, 1513167009951514623, 11827298001565515777
Offset: 0
Examples of congruences:
a(11) - a(1) = 1946337279 - 7 = (2^3)*(11^3)*182789 == 0 ( mod 11^3 ).
a(2*11) - a(2) = 11827298001565515777 - 33 = (2^5)*(3^2)*(11^3)*107* 288357478039 == 0 ( mod 11^3 ).
a(5^2) - a(5) = 5680983691406772011007 - 11007 = (2^8)*(3^3)*(5^6)*7* 19*1123*352183001 == 0 ( mod 5^6 ).
- R. P. Stanley. Enumerative combinatorics. Vol. 2, (volume 62 of Cambridge Studies in Advanced Mathematics). Cambridge University Press, Cambridge, 1999.
-
a := proc (n) option remember; `if`(n = 0, 1, `if`(n = 1, 7, `if`(n = 2, 33, ((3*n+4)*a(n-1)+(36*n-76)*a(n-2)+(32*n-80)*a(n-3))/n)))
end proc:
seq(a(n), n = 0..25);
-
a[n_] := (-1)^n - 2^(n+2) Binomial[2n, n-1] Hypergeometric2F1[1, 2n +1, n + 2, 2];
Table[Simplify[a[n]], {n, 0, 22}] (* Peter Luschny, Apr 13 2020 *)
CoefficientList[Series[(1+4x)/((1+x)Sqrt[1-8x]),{x,0,30}],x] (* Harvey P. Dale, Jan 24 2021 *)
A115138
A sequence related to Catalan numbers A000108.
Original entry on oeis.org
1, -1, 1, 15, 113, 783, 5361, 36879, 255985, 1794063, 12689393, 90505231, 650379249, 4705157135, 34244198385, 250572963855, 1842382110705, 13605619630095, 100872203796465, 750556607938575, 5602962592235505, 41952165966643215, 314983352736153585
Offset: 0
15= a(3) = A062992(3) - 4*A062992(2) = 67 - 4*13.
Showing 1-8 of 8 results.
Comments