cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351858 a(n) = [x^n] (1 + x + x^2)^(3*n)/(1 + x)^(2*n).

Original entry on oeis.org

1, 1, 7, 19, 103, 376, 1825, 7547, 35175, 153838, 708132, 3181091, 14616481, 66582283, 306501377, 1407473269, 6497464679, 29991098982, 138844558150, 643215119214, 2985368996228, 13868212710623, 64508509024241, 300324344452479, 1399598738196897, 6527698842078501
Offset: 0

Views

Author

Peter Bala, Feb 27 2022

Keywords

Comments

Given an integer sequence (g(n))n>=1, there exists a formal power series G(x), with rational coefficients, such that g(n) = [x^n] G(x)^n. The power series G(x) has integer coefficients iff the Gauss congruences g(n*p^r) == g(n*p^(r-1)) (mod p^r) hold for all primes p and positive integers n and r.
The central binomial coefficient binomial(2*n,n) = A000984(n) may be defined using the coefficient extraction operator as binomial(2*n,n) = [x^n] ((1 + x)^2)^n and hence the Gauss congruences hold for A000984. Moreover, it is known that the stronger supercongruences A000984(n*p^r) == A000984(n*p^(r-1)) (mod p^(3*r)) hold for primes p >= 5 and positive integers n and r. See Meštrović, equation 39.
We define an infinite family of sequences as follows. Let k be a positive integer. Define the rational function G_k(x) = (1 + x + ... + x^k)^(k+1)/(1 + x + ... + x^(k-1))^k and define the sequence u_k by u_k(n) = [x^n] G_k(x)^n. In particular, G_1(x) = (1 + x)^2 and the sequence u_1 is the sequence of central binomial coefficients. The present sequence is the case k = 2. See A351859 for the case k = 3.
Conjecture: for k >= 2, each sequence u_k satisfies the same supercongruences as the central binomial coefficients.
More generally, if r is a positive integer and s an integer then the sequence defined by u_k(r,s;n) = [x^(r*n)] G_k(x)^(s*n) may satisfy the same supercongruences.

Examples

			Examples of supercongruences:
a(5) - a(1) = 376 - 1 = 3*(5^3) == 0 (mod 5^3)
a(2*7)- a(2) = 306501377 - 7 = 2*5*(7^3)*193*463 == 0 (mod 7^3)
A(5^2) - a(5) = 6527698842078501 - 376 = (5^6)*17*107*229671647 == 0 (mod 5^6)
		

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Maple
    seq(add(add((-1)^(n-k-j)*binomial(n,k)*binomial(3*n,j)* binomial(4*n-2*j-k-1,n-k-j), j = 0..n-k), k = 0..n), n = 0..25);
  • Mathematica
    A351858[n_]:=Sum[(-1)^(n-k-j)Binomial[n,k]Binomial[3n,j]Binomial[4n-2j-k-1,n-k-j],{k,0,n},{j,0,n-k}];Array[A351858,25,0] (* Paolo Xausa, Oct 04 2023 *)
    a[n_]:=SeriesCoefficient[(1 + x + x^2)^(3*n)/(1 + x)^(2*n),{x,0,n}]; Array[a,26,0] (* Stefano Spezia, Apr 30 2024 *)

Formula

a(n) = Sum_{k = 0..n} Sum_{j = 0..n-k} (-1)^(n-k-j)*C(n,k)*C(3*n,j)*C(4*n-2*j-k-1,n-k-j).
Conjecture: a(n) = Sum_{k = 0..floor(n/2)} C(3*n,k)*C(n-k,k).
The o.g.f. A(x) = 1 + x + 7*x^2 + 19*x^3 + ... is the diagonal of the bivariate rational function 1/(1 - t*(1 + x + x^2)^3/(1 + x)^2) and hence is an algebraic function over the field of rational functions Q(x) by Stanley, Theorem 6.33, p. 197.
Let F(x) = (1/x)*Series_Reversion( x*(1 + x)^2/(1 + x + x^2)^3 ) = 1 + x + 4*x^2 + 10*x^3 + 40*x^4 + 133*x^5 + 536*x^6 + .... Then A(x) = 1 + x*F'(x)/F(x).
a(n) ~ sqrt(2/9 + 2*sqrt(53/47)*cos(arccos(1259*sqrt(47/53)/1696)/3)/9) * (2*sqrt(164581)*cos(arccos(-90631279/(1316648*sqrt(164581)))/3)/81 - 293/81)^n / sqrt(Pi*n). - Vaclav Kotesovec, Jun 05 2022

A333564 a(n) = [x^n] ( c(x)/c(-x) )^n, where c(x) = (1 - sqrt( 1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.

Original entry on oeis.org

2, 8, 56, 384, 2752, 20096, 148864, 1114112, 8403968, 63787008, 486584320, 3727196160, 28649455616, 220869853184, 1707123245056, 13223868760064, 102636144295936, 797982357192704, 6213784327684096, 48452953790480384, 378291752487878656, 2956824500391378944
Offset: 1

Views

Author

Peter Bala, Apr 07 2020

Keywords

Comments

It can be shown that a(n) satisfies the Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p. We conjecture that a(n) satisfies the stronger congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 3 and positive integers n and k. Some examples are given below.
More generally, for integer r and positive integer s, we conjecture that the sequence a(r,s;n) := 2^(r*n) * Sum_{k = 0..s*n-1} (-1)^(s*n-1+k)*( binomial(n+k,k) )^r satisfies the same congruences. This is the case r = s = 1.

Examples

			Examples of congruences:
a(11) - a(1) = 486584320 - 2 = 2*(11^3)*182789 == 0 ( mod 11^3 ).
a(2*11) - a(2) = 2956824500391378944 - 8 = (2^3)*(3^2)*(11^3)*
107*288357478039 == 0 ( mod 11^3 ).
a(5^2) - a(5) = 1420245922851693002752 - 2752 = (2^6)*(3^3)*(5^6)* 7*19*1123*352183001 == 0 ( mod 5^6 ).
		

Crossrefs

Programs

  • Maple
    seq( (2^n)*add( (-1)^(n-1+k)*binomial(n+k,k), k = 0..n-1), n = 1..25);
    # alternative program
    a := proc (n) option remember; `if`(n = 1, 2, `if`(n = 2, 8, `if`(n = 3, 56, ((3*n+4)*a(n-1)+(36*n-76)*a(n-2)+(32*n-80)*a(n-3))/n)))
    end proc:
    seq(a(n), n = 1..25);
  • Mathematica
    a[n_] := -2^(n) Binomial[2n, n-1] Hypergeometric2F1[1, 2n +1, n + 2, 2];
    Table[Simplify[a[n]], {n, 1, 22}] (* Peter Luschny, Apr 13 2020 *)
    c[x_] := (1-Sqrt[1-4x])/(2x); ser[n_] := Series[(c[x]/c[-x])^n, {x, 0, 22}];
    Table[SeriesCoefficient[ser[n], n], {n, 1, 22}] (* Peter Luschny, Apr 14 2020 *)
  • Python
    from itertools import count, islice
    def A333564_gen(): # generator of terms
        yield (a:=2)
        c = 1
        for n in count(1):
            yield a<>1
    A333564_list = list(islice(A333564_gen(),20)) # Chai Wah Wu, Apr 26 2023

Formula

a(n) = 2^n * Sum_{k = 0..n-1} (-1)^(n-1+k)*binomial(n+k,k) = 2^n * A014300(n).
a(n) = (-1)^(n+1) + Sum_{k = 0..n-1} n^2/((n-k)*(2*n-k))*C(n-k,k)*C(3*n-2*k-1,n-k).
Congruences: a(p) == 2 ( mod p^3 ) for all prime p >= 3, follows from previous formula.
a(n) = Sum_{k = 1..n} (-1)^(n+k)*(3*k-1)*2^(k-1)*A000108(k-1).
a(n) = (1/2)*(A119259(n) - (-1)^n).
a(n) ~ 8^n / (3*sqrt(Pi*n)).
P-recursive with recurrence n*(3*n - 4)*a(n) = (21*n^2 - 40*n + 12)*a(n-1) + 4*(3*n - 1)*(2*n - 3)*a(n-2) with a(1) = 2 and a(2) = 8. Cf. A333565.
Alternative form: (a(n) + a(n-1))/(a(n) - a(n-2)) = P(n)/Q(n), where P(n) = 4*(3*n - 1)*(2*n - 3) and Q(n) = (21*n^2 - 40*n + 12).
Also, n*a(n) = (3*n + 4)*a(n-1) + 4*(9*n - 19)*a(n-2) + 16*(2*n - 5)*a(n-3) with a(1) = 2, a(2) = 8 and a(3) = 56.
O.g.f.: A(x) = 4*x/(1 - 8*x + (1 + 4*x)*sqrt(1 - 8*x)), which satisfies the differential equation (x + 1)*(4*x + 1)*(8*x - 1)*A'(x) + (16*x^2 - 4*x + 7)*A(x) + 2*(1 - 2*x) = 0.

A351859 a(n) = [x^n] (1 + x + x^2 + x^3)^(4*n)/(1 + x + x^2)^(3*n).

Original entry on oeis.org

1, 1, 3, 19, 67, 251, 1137, 4803, 20035, 87013, 377753, 1634469, 7134385, 31261114, 137121113, 603206144, 2660097603, 11749336328, 51981371895, 230336544210, 1021976441817, 4539784391763, 20188837618799, 89871081815631, 400427435522737, 1785639575031501
Offset: 0

Views

Author

Peter Bala, Mar 01 2022

Keywords

Comments

This sequence is the third in an infinite family of sequences defined as follows. Let k be a positive integer. Define the rational function G_k(x) = (1 + x + ... + x^k)^(k+1)/(1 + x + ... + x^(k-1))^k, so that G_1(x) = (1 + x)^2, and define the sequence u_k by u_k(n) = [x^n] G_k(x)^n. See A000984, the sequence of central binomial coefficients, for the case k = 1 and A351858 for the case k = 2. The present sequence is the case k = 3.
Given a power series G(x) with integer coefficients it is known that the sequence (g(n))n>=1 defined by g(n) := [x^n] G(x)^n satisfies the Gauss congruences g(n*p^r) == g(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
Thus a(n) satisfies the Gauss congruences. Calculation suggests that, in fact, the stronger supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for primes p >= 5 and positive integers n and r. These supercongruences are known to hold for the central binomial coefficients A000984(n) = [x^n] ((1 + x)^2)^n (Meštrović, equation 39).
More generally, if r is a positive integer and s an integer then the sequence defined by a(r,s;n) = [x^(r*n)] G_3(x)^(s*n) may satisfy the same supercongruences.

Examples

			Examples of supercongruences:
a(5) - a(1) = 251 - 1 = 2*(5^3) == 0 (mod 5^3)
a(2*7) - a(2) = 137121113 - 3 = 2*5*(7^4)*5711 == 0 (mod 7^4)
a(5^2) - a(5) = 1785639575031501 - 251 = 2*(5^6)*1373*3989*10433 == 0 (mod 5^6)
		

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Maple
    seq(add(add(add((-1)^j*binomial(4*n,n-2*i-j-k)*binomial(4*n,i)* binomial(3*n+j-1,j)*binomial(j,k), k = 0..j), j = 0..n), i = 0..n), n = 0..25);
  • Mathematica
    A351859[n_] := Sum[(-1)^j*Binomial[4*n, n-2*i-j-k]*Binomial[4*n, i]*Binomial[3*n+j-1, j]*Binomial[j, k], {i, 0, n}, {j, 0, n}, {k, 0, j}];
    Array[A351859, 25, 0] (* Paolo Xausa, May 30 2025 *)
  • PARI
    a(n)=sum(i=0,n,sum(j=0,n,sum(k=0,j,(-1)^j*binomial(4*n,n-2*i-j-k)*binomial(4*n,i)*binomial(3*n+j-1,j)*binomial(j,k))));
    vector(25,n,a(n-1)) \\ Paolo Xausa, May 04 2022

Formula

a(n) = Sum_{i = 0..n} Sum_{j = 0..n} Sum_{k = 0..j} (-1)^j* C(4n,n-2*i-j-k) *C(4n,i)*C(3n+j-1,j)*C(j,k).
The o.g.f. A(x) = 1 + x + 3*x^2 + 19*x^3 + 67*x^4 + ... is the diagonal of the bivariate rational function 1/(1 - t*(1 + x + x^2 + x^3)^4/(1 + x + x^2)^3) and hence is an algebraic function over the field of rational functions Q(x) by Stanley, Theorem 6.33, p. 197.
Let F(x) = (1/x)*Series_Reversion( x*(1 + x + x^2)^3/(1 + x + x^2 + x^3)^4 ) = 1 + x + 2*x^2 + 8*x^3 + 25*x^4 + 81*x^5 + 305*x^6 + .... Then A(x) = 1 + x*F'(x)/F(x).
Showing 1-3 of 3 results.