A372211
a(n) = [x^n] f(x)^n, where f(x) = (1 - x^5)^5/((1 - x^2)^2 * (1 - x^3)^3).
Original entry on oeis.org
1, 0, 4, 9, 36, 125, 535, 1715, 7716, 26739, 111379, 419265, 1683351, 6518499, 26081381, 102089384, 408200740, 1612289384, 6441151477, 25602561864, 102352339411, 408402686750, 1635036583239, 6541552959219, 26227281703575, 105151396500125, 422159487904405, 1695369986497917
Offset: 0
Supercongruences:
a(11) = 419265 = (3^2)*5*7*11^3 == 0 (mod 11^3).
a(23) = 6541552959219 = (3^2)*(23^3)*59738573 == 0 (mod 23^3).
a(2*7) - a(2) = 26081381 - 4 = (7^3)*76039 == 0 (mod 7^3).
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
A372212
a(n) = [x^n] f(x)^n, where f(x) = (1 - x^7)^7/((1 - x^2)^2 * (1 - x^5)^5).
Original entry on oeis.org
1, 0, 4, 0, 36, 25, 364, 441, 3876, 6561, 43779, 91839, 513900, 1245699, 6201199, 16645750, 76379940, 220760742, 955328863, 2916666288, 12090544611, 38466060066, 154437142545, 506976137710, 1987270052460, 6681958793775, 25724578443321, 88104794553729
Offset: 0
Supercongruences:
a(11) = 91839 = 3*(11^3)*23 == 0 (mod 11^3).
a(2*11) - a(2) = 154437142545 - 4 = (11^3)*2671*43441 == 0 (mod 11^3).
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
A372213
a(n) = [x^n] f(x)^n, where f(x) = (1 - x^7)^7/((1 - x^3)^3 * (1 - x^4)^4).
Original entry on oeis.org
1, 0, 0, 9, 16, 0, 171, 539, 528, 3654, 16500, 29282, 101851, 483340, 1215445, 3416634, 14564880, 44585475, 124007202, 462804166, 1555048516, 4547401595, 15500748802, 53459717443, 164998563675, 538593687500, 1845162146828, 5920282930815, 19091999953749, 64389113743812, 211137579083046
Offset: 0
Supercongruences:
a(11) = 29282 = 2*(11^4) == 0 (mod 11^4).
a(13) = 483340 = (2^2)*5*11*(13^3) == 0 (mod 13^3).
a(2*11) = 15500748802 = 2*7*(11^4)*47*1609 == 0 (mod 11^4).
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
a(28) corrected by and more terms from
Georg Fischer, Jul 28 2025
A351859
a(n) = [x^n] (1 + x + x^2 + x^3)^(4*n)/(1 + x + x^2)^(3*n).
Original entry on oeis.org
1, 1, 3, 19, 67, 251, 1137, 4803, 20035, 87013, 377753, 1634469, 7134385, 31261114, 137121113, 603206144, 2660097603, 11749336328, 51981371895, 230336544210, 1021976441817, 4539784391763, 20188837618799, 89871081815631, 400427435522737, 1785639575031501
Offset: 0
Examples of supercongruences:
a(5) - a(1) = 251 - 1 = 2*(5^3) == 0 (mod 5^3)
a(2*7) - a(2) = 137121113 - 3 = 2*5*(7^4)*5711 == 0 (mod 7^4)
a(5^2) - a(5) = 1785639575031501 - 251 = 2*(5^6)*1373*3989*10433 == 0 (mod 5^6)
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
-
seq(add(add(add((-1)^j*binomial(4*n,n-2*i-j-k)*binomial(4*n,i)* binomial(3*n+j-1,j)*binomial(j,k), k = 0..j), j = 0..n), i = 0..n), n = 0..25);
-
A351859[n_] := Sum[(-1)^j*Binomial[4*n, n-2*i-j-k]*Binomial[4*n, i]*Binomial[3*n+j-1, j]*Binomial[j, k], {i, 0, n}, {j, 0, n}, {k, 0, j}];
Array[A351859, 25, 0] (* Paolo Xausa, May 30 2025 *)
-
a(n)=sum(i=0,n,sum(j=0,n,sum(k=0,j,(-1)^j*binomial(4*n,n-2*i-j-k)*binomial(4*n,i)*binomial(3*n+j-1,j)*binomial(j,k))));
vector(25,n,a(n-1)) \\ Paolo Xausa, May 04 2022
A372382
Coefficient of x^n in the expansion of ( (1+x+x^2)^4 / (1+x)^3 )^n.
Original entry on oeis.org
1, 1, 9, 25, 169, 651, 3801, 17053, 93225, 450844, 2396859, 12043494, 63354649, 324888305, 1704137493, 8839907475, 46383701545, 242285478474, 1273274074020, 6681277302239, 35178613785819, 185187072845569, 976888169385302, 5154978257816280, 27240094648199961
Offset: 0
-
a[n_]:=SeriesCoefficient[((1+x+x^2)^4/(1+x)^3)^n,{x,0,n}]; Array[a,25,0] (* Stefano Spezia, Apr 30 2024 *)
-
a(n, s=2, t=4, u=-3) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));
A372370
Coefficient of x^n in the expansion of ( (1+x+x^2)^2 / (1+x) )^n.
Original entry on oeis.org
1, 1, 5, 13, 53, 176, 677, 2451, 9333, 34978, 133580, 508806, 1953701, 7509178, 28981643, 112046213, 434289525, 1686080622, 6557830310, 25542229740, 99622788428, 389023326600, 1520817551742, 5951305115982, 23310374278437, 91380414955176, 358506409488102
Offset: 0
-
a[n_]:=SeriesCoefficient[((1+x+x^2)^2/(1+x))^n,{x,0,n}]; Array[a,27,0] (* Stefano Spezia, Apr 30 2024 *)
-
a(n, s=2, t=2, u=-1) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));
A372369
Coefficient of x^n in the expansion of ( (1+x+x^2)^3 / (1+x) )^n.
Original entry on oeis.org
1, 2, 12, 65, 388, 2352, 14565, 91289, 577764, 3683459, 23621462, 152203482, 984598741, 6390596591, 41596873869, 271424778015, 1774892605284, 11628321367815, 76311803660025, 501554760288813, 3300889231760238, 21750690436059188, 143481522241226962
Offset: 0
-
a(n, s=2, t=3, u=-1) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));
Showing 1-7 of 7 results.
Comments