cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372370 Coefficient of x^n in the expansion of ( (1+x+x^2)^2 / (1+x) )^n.

Original entry on oeis.org

1, 1, 5, 13, 53, 176, 677, 2451, 9333, 34978, 133580, 508806, 1953701, 7509178, 28981643, 112046213, 434289525, 1686080622, 6557830310, 25542229740, 99622788428, 389023326600, 1520817551742, 5951305115982, 23310374278437, 91380414955176, 358506409488102
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((1+x+x^2)^2/(1+x))^n,{x,0,n}]; Array[a,27,0] (* Stefano Spezia, Apr 30 2024 *)
  • PARI
    a(n, s=2, t=2, u=-1) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(n-k,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1+x) / (1+x+x^2)^2 ).

A372383 Expansion of (1/x) * Series_Reversion( x * (1+x)^3 / (1+x+x^2)^4 ).

Original entry on oeis.org

1, 1, 5, 13, 63, 225, 1069, 4425, 21008, 93927, 449574, 2099993, 10161845, 48761421, 238544091, 1165258909, 5756929854, 28480358700, 141911407403, 708766944499, 3557401656125, 17900413391858, 90401732441880, 457657822713177, 2323507912981800, 11822283300379509
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2024

Keywords

Crossrefs

Cf. A372382.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1+x)^3/(1+x+x^2)^4)/x)
    
  • PARI
    a(n, s=2, t=4, u=-3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(4*n+4,k) * binomial(n-k+1,n-2*k).
Showing 1-2 of 2 results.