A014300
Number of nodes of odd outdegree in all ordered rooted (planar) trees with n edges.
Original entry on oeis.org
1, 2, 7, 24, 86, 314, 1163, 4352, 16414, 62292, 237590, 909960, 3497248, 13480826, 52097267, 201780224, 783051638, 3044061116, 11851853042, 46208337584, 180383564228, 704961896036, 2757926215742, 10799653176704, 42326626862636, 166021623024584, 651683311373788
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..500
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Hacène Belbachir and Abdelghani Mehdaoui, Diagonal sums in Pascal pyramid (1, 2, r), Les Annales RECITS (2019) Vol. 6, 45-52.
- N. Dershowitz and S. Zaks, Ordered trees and non-crossing partitions, Discrete Math., 62 (1986), 215-218.
- Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
- Index entries for sequences related to rooted trees
-
[(&+[(-1)^(n-k)*Binomial(n+k-1, k-1): k in [0..n]]): n in [1..30]]; // G. C. Greubel, Feb 19 2019
-
a:= proc(n) a(n):= `if`(n<3, n, ((12-40*n+21*n^2) *a(n-1)+
2*(3*n-1)*(2*n-3) *a(n-2))/ (2*(3*n-4)*n))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Oct 30 2012
-
Rest[CoefficientList[Series[2x/(1-4x+(1+2x)Sqrt[1-4x]),{x,0,40}],x]] (* Harvey P. Dale, Apr 25 2011 *)
a[n_] := Sum[Binomial[2k, n-1], {k, 0, n-1}]; Array[a, 30] (* Jean-François Alcover, Dec 25 2015, after Paul Barry *)
-
a(n) = n--; sum(k=0, n, binomial(2*k,n)); \\ Michel Marcus, May 18 2018
-
from itertools import count, islice
def A014300_gen(): # generator of terms
yield from (1,2)
a, c = 1, 1
for n in count(1):
yield (a:=(3*n+5)*(c:=c*((n<<2)+2)//(n+2))-a>>1)
A014300_list = list(islice(A014300_gen(),20)) # Chai Wah Wu, Apr 26 2023
-
[sum((-1)^(n-k)*binomial(n+k-1, k-1) for k in (0..n)) for n in (1..30)] # G. C. Greubel, Feb 19 2019
A351858
a(n) = [x^n] (1 + x + x^2)^(3*n)/(1 + x)^(2*n).
Original entry on oeis.org
1, 1, 7, 19, 103, 376, 1825, 7547, 35175, 153838, 708132, 3181091, 14616481, 66582283, 306501377, 1407473269, 6497464679, 29991098982, 138844558150, 643215119214, 2985368996228, 13868212710623, 64508509024241, 300324344452479, 1399598738196897, 6527698842078501
Offset: 0
Examples of supercongruences:
a(5) - a(1) = 376 - 1 = 3*(5^3) == 0 (mod 5^3)
a(2*7)- a(2) = 306501377 - 7 = 2*5*(7^3)*193*463 == 0 (mod 7^3)
A(5^2) - a(5) = 6527698842078501 - 376 = (5^6)*17*107*229671647 == 0 (mod 5^6)
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Cf.
A000984,
A103885,
A333090,
A333564,
A333565,
A333579,
A333715,
A351856,
A351857,
A351859,
A372211,
A372212,
A372213.
-
seq(add(add((-1)^(n-k-j)*binomial(n,k)*binomial(3*n,j)* binomial(4*n-2*j-k-1,n-k-j), j = 0..n-k), k = 0..n), n = 0..25);
-
A351858[n_]:=Sum[(-1)^(n-k-j)Binomial[n,k]Binomial[3n,j]Binomial[4n-2j-k-1,n-k-j],{k,0,n},{j,0,n-k}];Array[A351858,25,0] (* Paolo Xausa, Oct 04 2023 *)
a[n_]:=SeriesCoefficient[(1 + x + x^2)^(3*n)/(1 + x)^(2*n),{x,0,n}]; Array[a,26,0] (* Stefano Spezia, Apr 30 2024 *)
A333565
O.g.f.: (1 + 4*x)/((1 + x)*sqrt(1 - 8*x)).
Original entry on oeis.org
1, 7, 33, 223, 1537, 11007, 80385, 595455, 4456449, 33615871, 255148033, 1946337279, 14908784641, 114597822463, 883479412737, 6828492980223, 52895475040257, 410544577183743, 3191929428770817, 24855137310736383, 193811815161921537, 1513167009951514623, 11827298001565515777
Offset: 0
Examples of congruences:
a(11) - a(1) = 1946337279 - 7 = (2^3)*(11^3)*182789 == 0 ( mod 11^3 ).
a(2*11) - a(2) = 11827298001565515777 - 33 = (2^5)*(3^2)*(11^3)*107* 288357478039 == 0 ( mod 11^3 ).
a(5^2) - a(5) = 5680983691406772011007 - 11007 = (2^8)*(3^3)*(5^6)*7* 19*1123*352183001 == 0 ( mod 5^6 ).
- R. P. Stanley. Enumerative combinatorics. Vol. 2, (volume 62 of Cambridge Studies in Advanced Mathematics). Cambridge University Press, Cambridge, 1999.
-
a := proc (n) option remember; `if`(n = 0, 1, `if`(n = 1, 7, `if`(n = 2, 33, ((3*n+4)*a(n-1)+(36*n-76)*a(n-2)+(32*n-80)*a(n-3))/n)))
end proc:
seq(a(n), n = 0..25);
-
a[n_] := (-1)^n - 2^(n+2) Binomial[2n, n-1] Hypergeometric2F1[1, 2n +1, n + 2, 2];
Table[Simplify[a[n]], {n, 0, 22}] (* Peter Luschny, Apr 13 2020 *)
CoefficientList[Series[(1+4x)/((1+x)Sqrt[1-8x]),{x,0,30}],x] (* Harvey P. Dale, Jan 24 2021 *)
A333563
a(n) = [x^n] G(x)^n, where G(x) is the o.g.f. of A079489.
Original entry on oeis.org
1, 3, 53, 1056, 22181, 480003, 10588508, 236720424, 5344683429, 121590541641, 2782821611053, 64001191118956, 1477895865330092, 34243264651422596, 795729752353810824, 18537154747116799056, 432781371485493257637, 10123439350286679005973
Offset: 0
Examples of congruences:
a(17) - a(1) = 10123439350286679005973 - 3 = 2(3^3)*5*(17^3)* 7631634401766047 == 0 ( mod 17^3 ).
a(3*5) - a(3) = 18537154747116799056 - 1056 = (2^4)*3*(5^3)*13* 237655830091241 == 0 ( mod 5^3 ).
a(5^2) - a(5) = 952866706104433648666617525245628 - 480003 = 3*(5^7)*17* 3642302759*65659247842693913 == 0 ( mod 5^6 ).
-
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G:= x -> c(sqrt(x))*c(-sqrt(x)):
H:= series(G(x)^n, x, 26):
seq(coeff(H, x, n), n = 0..25);
-
Join[{1}, Table[n^2 * Sum[(-1)^k/((n + 2*k)*(5*n - 2*k))*Binomial[n + 2*k, k] * Binomial[5*n - 2*k, 2*n - k], {k, 0, 2*n}], {n, 1, 20}]] (* Vaclav Kotesovec, Apr 20 2020 *)
Join[{1}, Table[Binomial[5*n, 2*n] * HypergeometricPFQ[{1/2 + n/2, -3*n, -2*n, n/2}, {1/2 - 5*n/2, 1 - 5*n/2, 1 + n}, -1]/5, {n, 1, 20}]] (* Vaclav Kotesovec, May 16 2020 *)
-
a(n) = if (n==0, 1, n^2 * sum(k = 0, 2*n, (-1)^k/((n+2*k)*(5*n-2*k))*binomial(n+2*k,k)*binomial(5*n-2*k, 2*n-k))); \\ Michel Marcus, May 16 2020
A351859
a(n) = [x^n] (1 + x + x^2 + x^3)^(4*n)/(1 + x + x^2)^(3*n).
Original entry on oeis.org
1, 1, 3, 19, 67, 251, 1137, 4803, 20035, 87013, 377753, 1634469, 7134385, 31261114, 137121113, 603206144, 2660097603, 11749336328, 51981371895, 230336544210, 1021976441817, 4539784391763, 20188837618799, 89871081815631, 400427435522737, 1785639575031501
Offset: 0
Examples of supercongruences:
a(5) - a(1) = 251 - 1 = 2*(5^3) == 0 (mod 5^3)
a(2*7) - a(2) = 137121113 - 3 = 2*5*(7^4)*5711 == 0 (mod 7^4)
a(5^2) - a(5) = 1785639575031501 - 251 = 2*(5^6)*1373*3989*10433 == 0 (mod 5^6)
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
-
seq(add(add(add((-1)^j*binomial(4*n,n-2*i-j-k)*binomial(4*n,i)* binomial(3*n+j-1,j)*binomial(j,k), k = 0..j), j = 0..n), i = 0..n), n = 0..25);
-
A351859[n_] := Sum[(-1)^j*Binomial[4*n, n-2*i-j-k]*Binomial[4*n, i]*Binomial[3*n+j-1, j]*Binomial[j, k], {i, 0, n}, {j, 0, n}, {k, 0, j}];
Array[A351859, 25, 0] (* Paolo Xausa, May 30 2025 *)
-
a(n)=sum(i=0,n,sum(j=0,n,sum(k=0,j,(-1)^j*binomial(4*n,n-2*i-j-k)*binomial(4*n,i)*binomial(3*n+j-1,j)*binomial(j,k))));
vector(25,n,a(n-1)) \\ Paolo Xausa, May 04 2022
A349648
Expansion of g.f.: Catalan(x)/Catalan(-x).
Original entry on oeis.org
1, 2, 2, 8, 14, 64, 132, 640, 1430, 7168, 16796, 86016, 208012, 1081344, 2674440, 14057472, 35357670, 187432960, 477638700, 2549088256, 6564120420, 35223764992, 91482563640, 493132709888, 1289904147324, 6979724509184, 18367353072152, 99710350131200
Offset: 0
-
gf:= (c-> c(x)/c(-x))(x-> hypergeom([1/2, 1], [2], 4*x)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..35); # Alois P. Heinz, Nov 23 2021
-
CoefficientList[Series[(1-Sqrt[1-4x])/(Sqrt[1+4x]-1),{x,0,24}],x]
Showing 1-6 of 6 results.
Comments