A173403
Inverse binomial transform of A002416.
Original entry on oeis.org
1, 1, 13, 469, 63577, 33231721, 68519123173, 562469619451069, 18442242396353040817, 2417685638793025070212561, 1267626422541873052658376446653, 2658442047546208031914776455678477989, 22300713297142388711251601783864453690641417
Offset: 0
- E. A. Bender and S. G. Williamson, Foundations of Combinatorics with Applications, Dover, 2005, exercise 4.1.6.
-
N:=8: seq( sum(binomial(n,i)*2^((n-i)^2)*(-1)^(i), i=0..n), n=0..N);
-
Table[Sum[(-1)^k Binomial[n,k] 2^(n-k)^2,{k,0,n}],{n,0,20}] (* Geoffrey Critzer, Oct 02 2012 *)
A006125
a(n) = 2^(n*(n-1)/2).
Original entry on oeis.org
1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0
From _Gus Wiseman_, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
{} {} {}
{11} {11}
{12}
{22}
{11,12}
{11,22}
{12,22}
{11,12,22}
(End)
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
- G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
- J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..50
- F. Ardila and R. P. Stanley, Tilings, arXiv:math/0501170 [math.CO], 2005.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From _N. J. A. Sloane_, Oct 08 2012
- Anders Björner and Richard P. Stanley, A combinatorial miscellany, 2010.
- Tobias Boege and Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
- Taylor Brysiewicz and Fulvio Gesmundo, The Degree of Stiefel Manifolds, arXiv:1909.10085 [math.AG], 2019.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Mihai Ciucu, Perfect matchings of cellular graphs, J. Algebraic Combin., 5 (1996) 87-103.
- Mihai Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97.
- Thierry de la Rue and Élise Janvresse, Pavages aléatoires par touillage de dominos, Images des Mathématiques, CNRS, 2023. In French.
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part I, Journal of Algebraic Combinatorics 1-2, 111-132 (1992).
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part II, Journal of Algebraic Combinatorics 1-3, 219-234 (1992).
- Sen-Peng Eu and Tung-Shan Fu, A simple proof of the Aztec diamond theorem, arXiv:math/0412041 [math.CO], 2004.
- D. Grensing, I. Carlsen, and H.-Chr. Zapp, Some exact results for the dimer problem on plane lattices with non-standard boundaries, Phil. Mag. A, 41:5 (1980), 777-781.
- Harald Helfgott and Ira M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
- William Jockusch, Perfect matchings and perfect squares J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.
- Eric H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, Theoretical Computer Science, Vol. 319, No. 1-3 (2004), pp. 29-57, arXiv preprint, arXiv:math/0304090 [math.CO], 2003.
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- W. H. Mills, David P. Robbins, and Howard Rumsey, Jr., Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A 34 (1983), 340-359.
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- James Propp, Enumeration of matchings: problems and progress, arXiv:math/9904150 [math.CO], 1999.
- James Propp, Lessons I learned from Richard Stanley, arXiv preprint [math.CO], 2015.
- James Propp and R. P. Stanley, Domino tilings with barriers, arXiv:math/9801067 [math.CO], 1998.
- Steven S. Skiena, Generating graphs.
- David E. Speyer, Perfect matchings and the octahedron recurrence, Journal of Algebraic Combinatorics, Vol. 25, No. 3 (2007), pp. 309-348, arXiv preprint, arXiv:math/0402452 [math.CO], 2004.
- Jan Tóth and Ondřej Kuželka, Complexity of Weighted First-Order Model Counting in the Two-Variable Fragment with Counting Quantifiers: A Bound to Beat, arXiv:2404.12905 [cs.LO], 2024. See p. 24.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Connected Graph.
- Eric Weisstein's World of Mathematics, Labeled Graph.
- Eric Weisstein's World of Mathematics, Symmetric Matrix.
- Doron Zeilberger, Dave Robbins's Art of Guessing, Adv. in Appl. Math. 34 (2005), 939-954.
- Index entries for sequences related to dominoes
Cf.
A001187 (connected labeled graphs).
The unlabeled version is
A000088, or
A002494 without isolated vertices.
The version for hypergraphs is
A058891, or
A016031 without singletons.
The case of connected edge set is
A287689.
-
[2^(n*(n-1) `div` 2) | n <- [0..20]] -- José E. Solsona, Feb 05 2023
-
[2^(n*(n-1) div 2): n in [0..20]]; // Vincenzo Librandi, Jul 03 2019
-
Join[{1}, 2^Accumulate[Range[0, 20]]] (* Harvey P. Dale, May 09 2013 *)
Table[2^(n (n - 1) / 2), {n, 0, 20}] (* Vincenzo Librandi, Jul 03 2019 *)
Table[2^Binomial[n, 2], {n, 0, 15}] (* Eric W. Weisstein, Jan 03 2021 *)
2^Binomial[Range[0, 15], 2] (* Eric W. Weisstein, Jan 03 2021 *)
Prepend[Table[Count[Tuples[{0, 1}, {n, n}], ?SymmetricMatrixQ], {n, 5}], 1] (* _Eric W. Weisstein, Jan 03 2021 *)
Prepend[Table[Count[Tuples[{-1, 1}, {n, n}], ?PositiveDefiniteMatrixQ], 1], {n, 4}] (* _Eric W. Weisstein, Jan 03 2021 *)
-
A006125(n):=2^(n*(n-1)/2)$ makelist(A006125(n), n, 0, 30); /* Martin Ettl, Oct 24 2012 */
-
a(n)=1<Charles R Greathouse IV, Jun 15 2011
-
def A006125(n): return 1<<(n*(n-1)>>1) # Chai Wah Wu, Nov 09 2023
A053763
a(n) = 2^(n^2 - n).
Original entry on oeis.org
1, 1, 4, 64, 4096, 1048576, 1073741824, 4398046511104, 72057594037927936, 4722366482869645213696, 1237940039285380274899124224, 1298074214633706907132624082305024, 5444517870735015415413993718908291383296, 91343852333181432387730302044767688728495783936
Offset: 0
a(2)=4 because there are four 2 x 2 nilpotent matrices over GF(2):{{0,0},{0,0}},{{0,1},{0,0}},{{0,0},{1,0}},{{1,1,},{1,1}} where 1+1=0. - _Geoffrey Critzer_, Oct 05 2012
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 521.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 5, Eq. (1.1.5).
- T. D. Noe, Table of n, a(n) for n = 0..35
- Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
- N. J. Fine and I. N. Herstein, The probability that a matrix be nilpotent, Illinois J. Math., 2 (1958), 499-504.
- Murray Gerstenhaber, On the number of nilpotent matrices with coefficients in a finite field, Illinois J. Math., Vol. 5 (1961), 330-333.
- Antal Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
- Greg Kuperberg, Symmetry classes of alternating-sign matrices under one roof, Annals of mathematics, Second Series, Vol. 156, No. 3 (2002), pp. 835-866, arXiv preprint, arXiv:math/0008184 [math.CO], 2000-2001 (see Th. 3).
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
-
seq(4^(binomial(n, n-2)), n=0..12); # Zerinvary Lajos, Jun 16 2007
a:=n->mul(4^j, j=1..n-1): seq(a(n), n=0..12); # Zerinvary Lajos, Oct 03 2007
-
Table[2^(2*Binomial[n,2]), {n,0,20}] (* Geoffrey Critzer, Oct 04 2012 *)
-
a(n)=1<<(n^2-n) \\ Charles R Greathouse IV, Nov 20 2012
-
def A053763(n): return 1<Chai Wah Wu, Jul 05 2024
A000595
Number of binary relations on n unlabeled points.
Original entry on oeis.org
1, 2, 10, 104, 3044, 291968, 96928992, 112282908928, 458297100061728, 6666621572153927936, 349390545493499839161856, 66603421985078180758538636288, 46557456482586989066031126651104256, 120168591267113007604119117625289606148096, 1152050155760474157553893461743236772303142428672
Offset: 0
From _Gus Wiseman_, Jun 17 2019: (Start)
Non-isomorphic representatives of the a(2) = 10 relations:
{}
{1->1}
{1->2}
{1->1, 1->2}
{1->1, 2->1}
{1->1, 2->2}
{1->2, 2->1}
{1->1, 1->2, 2->1}
{1->1, 1->2, 2->2}
{1->1, 1->2, 2->1, 2->2}
(End)
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 76 (2.2.30)
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jean-François Alcover, Table of n, a(n) for n = 0..50 (a(0)-a(37) from Charles R. Greathouse IV)
- Edward A. Bender and E. Rodney Canfield, Enumeration of connected invariant graphs, Journal of Combinatorial Theory, Series B 34.3 (1983): 268-278. See p. 274.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Alberto Casagrande, Carla Piazza, and Alberto Policriti, Is hyper-extensionality preservable under deletions of graph elements?, Preprint 2015.
- Alexander Clow, Alfie Davies, and Neil Anderson McKay, Constructing All Birthday 3 Games as Digraphs, arXiv:2505.06206 [math.CO], 2025. See p. 13.
- Matthew Dabkowski, N. Fan, and R. Breiger, Exploratory blockmodeling for one-mode, unsigned, deterministic networks using integer programming and structural equivalence, Social Networks, Volume 47, October 2016, Pages 93-106.
- Robert L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486-495.
- Thomas M. A. Fink, Emmanuel Barillot, and Sebastian E. Ahnert, Dynamics of network motifs, 2006.
- Frank Harary, Edgar M. Palmer, Robert W. Robinson, and Allen J. Schwenk, Enumeration of graphs with signed points and lines, J. Graph Theory 1 (1977), no. 4, 295-308.
- Sergiy Kozerenko, On the abstract properties of Markov graphs for maps on trees, Mathematical Bilten 41:2 (2017), pp. 5-21.
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22. [Annotated scanned copy]
- W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Samuel Reid, On Generalizing a Temporal Formalism for Game Theory to the Asymptotic Combinatorics of S5 Modal Frames, arXiv preprint arXiv:1305.0064 [math.LO], 2013.
- Marko Riedel, Counting nonisomorphic binary relations (includes Maple code).
- R. W. Robinson, Notes - "A Present for Neil Sloane"
- R. W. Robinson, Notes - computer printout
- J. M. Tangen and N. J. A. Sloane, Correspondence, 1976-1976
- Leopold Travis, Graphical Enumeration: A Species-Theoretic Approach, arXiv:math/9811127 [math.CO], 1998.
- Gus Wiseman, Non-isomorphic representatives of the a(3) = 104 digraphs.
- Index entries for sequences related to binary matrices
-
NSeq := function ( n ) return Sum(List(ConjugacyClasses(SymmetricGroup(n)), c -> (2^Length(Orbits(Group(Representative(c)), CartesianProduct([1..n],[1..n]), OnTuples))) * Size(c)))/Factorial(n); end; # Dan Hoey, May 04 2001
-
Join[{1,2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n],Ordered], Permutations[Range[n^2-n+1,n^2]],2],s] /. Table[s[i]->2, {i,1,n^2-n}], {n,2,7}]] (* Geoffrey Critzer, Nov 02 2011 *)
permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
a[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
dinorm[m_]:=If[m=={},{},If[Union@@m!=Range[Max@@Flatten[m]],dinorm[m/.Apply[Rule,Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}],{1}]],First[Sort[dinorm[m,1]]]]];
dinorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#1>=aft&]}]},Union@@(dinorm[#1,aft+1]&)/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0}],{par,First/@Position[mx,Max[mx]]}]]]];
Table[Length[Union[dinorm/@Subsets[Tuples[Range[n],2]]]],{n,0,3}] (* Gus Wiseman, Jun 17 2019 *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i])}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
-
from itertools import product
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A000595(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 02 2024
Still more terms from
Dan Hoey, May 04 2001
A060690
a(n) = binomial(2^n + n - 1, n).
Original entry on oeis.org
1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160, 121317088003402776955124829814219234385920
Offset: 0
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2), this sequence (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n-1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
with(combinat): for n from 0 to 20 do printf(`%d,`,binomial(2^n+n-1, n)) od:
-
Table[Binomial[2^n+n-1,n],{n,0,20}] (* Harvey P. Dale, Apr 19 2012 *)
-
a(n)=binomial(2^n+n-1,n)
-
{a(n)=polcoeff(sum(k=0,n,(-log(1-2^k*x +x*O(x^n)))^k/k!),n)} \\ Paul D. Hanna, Dec 29 2007
-
a(n) = sum(k=0, n, stirling(n,k,1)*(2^n+n-1)^k/n!); \\ Paul D. Hanna, Nov 20 2014
-
from math import comb
def A060690(n): return comb((1<Chai Wah Wu, Jul 05 2024
-
[binomial(2^n +n-1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A064062
Generalized Catalan numbers C(2; n).
Original entry on oeis.org
1, 1, 3, 13, 67, 381, 2307, 14589, 95235, 636925, 4341763, 30056445, 210731011, 1493303293, 10678370307, 76957679613, 558403682307, 4075996839933, 29909606989827, 220510631755773, 1632599134961667, 12133359132082173
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. Abate and W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011) # 11.2.6, example section 3.
- Jean-Luc Baril, Sergey Kirgizov, and Mehdi Naima, A lattice on Dyck paths close to the Tamari lattice, arXiv:2309.00426 [math.CO], 2023.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From _N. J. A. Sloane_, Oct 08 2012
- J. Bloom and S. Elizalde, Pattern avoidance in matchings and partitions, arXiv:1211.3442 [math.CO] (2012) Theorem 6.1.
- N. Bonichon, C. Gavoille and N. Hanusse, Canonical Decomposition of Outerplanar Maps and Application to Enumeration, Coding and Generation, In Proceedings of WG'03, volume 2880 of LNCS, pp. 81-92, 2003.
- Alexander Burstein, Sergi Elizalde and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006.
- Xiang-Ke Chang, X.-B. Hu, H. Lei and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017).
- Simone Fioravanti, Steve Hanneke, Shay Moran, Hilla Schefler, and Iska Tsubari, Ramsey Theorems for Trees and a General 'Private Learning Implies Online Learning' Theorem, arXiv:2407.07765 [cs.LG], 2024. See p. 44.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
- N. J. A. Sloane, Transforms
- A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011-2012.
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (3 - Sqrt(1-8*x))/(2*(1+x)) )); // G. C. Greubel, Sep 27 2024
-
1, seq(simplify(hypergeom([1-n,n],[-n],2)), n=1..100); # Robert Israel, Nov 30 2014
-
a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + Sum[(a[k] + a[k-1])a[n-k],{k,n-1}]; Table[a[n],{n,0,10}] (* David Callan, Aug 27 2009 *)
a[n_] := 2*Sum[ (-1)^j*2^(n-j-1)*Binomial[2*(n-j-1), n-j-1]/(n-j), {j, 0, n-1}] + (-1)^n; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 03 2013 *)
-
{a(n)=polcoeff((3-sqrt(1-8*x+x*O(x^n)))/(2+2*x),n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^2+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 24 2013
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=polcoeff(1/(1 - serreverse(x-2*x^2 +x^2*O(x^n))),n)}
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 30 2014
-
def a(n):
if n==0: return 1
return hypergeometric([1-n, n], [-n], 2).simplify()
[a(n) for n in range(22)] # Peter Luschny, Dec 01 2014
A117401
Triangle T(n,k) = 2^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 64, 64, 16, 1, 1, 32, 256, 512, 256, 32, 1, 1, 64, 1024, 4096, 4096, 1024, 64, 1, 1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1, 1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1
Offset: 0
A(x,y) = 1/(1-xy) + x/(1-2xy) + x^2/(1-4xy) + x^3/(1-8xy) + ...
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 8, 16, 8, 1;
1, 16, 64, 64, 16, 1;
1, 32, 256, 512, 256, 32, 1;
1, 64, 1024, 4096, 4096, 1024, 64, 1;
1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1;
1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1;
-
A117401:= func< n, k, m | (m+2)^(k*(n-k)) >;
[A117401(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
Table[2^((n-k)k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 09 2017 *)
-
T(n,k)=if(n
-
def A117401(n, k, m): return (m+2)^(k*(n-k))
flatten([[A117401(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
A055165
Number of invertible n X n matrices with entries equal to 0 or 1.
Original entry on oeis.org
1, 1, 6, 174, 22560, 12514320, 28836612000, 270345669985440, 10160459763342013440
Offset: 0
Ulrich Hermisson (uhermiss(AT)server1.rz.uni-leipzig.de), Jun 18 2000
For n=2 the 6 matrices are {{{0, 1}, {1, 0}}, {{0, 1}, {1, 1}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}, {{1, 1}, {1, 0}}}.
- Eric Weisstein's World of Mathematics, Nonsingular Matrix.
- Chai Wah Wu, Can machine learning identify interesting mathematics? An exploration using empirically observed laws, arXiv:1805.07431 [cs.LG], 2018.
- Miodrag Zivkovic, Classification of small (0,1) matrices, arXiv:math/0511636 [math.CO], 2005; Linear Algebra and its Applications, 414 (2006), 310-346.
- Miodrag Zivkovic, Classification of (0,1) matrices of order not exceeding 8.
- Index entries for sequences related to binary matrices
A046747(n) + a(n) = 2^(n^2) = total number of n X n (0, 1) matrices = sequence
A002416.
-
a(n)=sum(t=0,2^n^2-1,!!matdet(matrix(n,n,i,j,(t>>(i*n+j-n-1))%2))) \\ Charles R Greathouse IV, Feb 09 2016
-
from itertools import product
from sympy import Matrix
def A055165(n): return sum(1 for s in product([0,1],repeat=n**2) if Matrix(n,n,s).det() != 0) # Chai Wah Wu, Sep 24 2021
More terms from Miodrag Zivkovic (ezivkovm(AT)matf.bg.ac.rs), Feb 28 2006
A046747
Number of n X n rational {0,1}-matrices of determinant 0.
Original entry on oeis.org
1, 10, 338, 42976, 21040112, 39882864736, 292604283435872, 8286284310367538176
Offset: 1
Günter M. Ziegler (ziegler(AT)math.tu-berlin.de)
a(2)=10: the matrix of all 0's, 4 matrices with 2 zeros in the same row or column, 4 matrices with 3 zeros and the all-1 matrix.
- J. Bourgain, V. Vu and P. M. Wood, On the Singularity Probability of Discrete Random Matrices, Journal of Functional Analysis, 258 (2010), 559-603.
- R. P. Brent and J. H. Osborn, Bounds on minors of binary matrices, arXiv preprint arXiv:1208.3330 [math.CO], 2012.
- J. Kahn, J. Komlos and E. Szemeredi, On the probability that a random ±1-matrix is singular, J. AMS 8 (1995), 223-240.
- J. Komlos, On the determinant of (0,1)-matrices, Studia Math. Hungarica 2 (1967), 7-21.
- N. Metropolis and P. R. Stein, On a class of (0,1) matrices with vanishing determinants, J. Combin. Theory, 3 (1967), 191-198.
- Eric Weisstein's World of Mathematics, Singular Matrix.
- Miodrag Zivkovic, Classification of small (0,1) matrices, arXiv:math/0511636 [math.CO], 2005.
- Miodrag Zivkovic, Classification of small (0,1) matrices, Linear Algebra and its Applications, 414 (2006), 310-346.
- Index entries for sequences related to binary matrices
-
Sum[KroneckerDelta[Det[Array[Mod[Floor[k/(2^(n*(#1-1)+#2-1))],2]&,{n,n}]],0],{k,0,(2^(n^2))-1}] (* John M. Campbell, Jun 24 2011 *)
Count[Det /@ Tuples[{0, 1}, {n, n}], 0] (* David Trimas, Sep 23 2024 *)
-
A046747(n) = m=matrix(n,n); ct=0; for(x=0,2^(n*n)-1,a=binary(x+2^(n*n)); for(i=1,n, for(j=1,n,m[i,j]=a[n*i+j+1-n])); if(matdet(m)==0,ct=ct+1,); ); ct \\ Randall L Rathbun
-
a(n)=sum(i=0,2^n^2-1,matdet(matrix(n,n,x,y,(i>>(n*x+y-n-1))%2))==0) \\ Charles R Greathouse IV, Feb 21 2015
A326209
Number of nesting labeled digraphs with vertices {1..n}.
Original entry on oeis.org
0, 0, 4, 408, 64528
Offset: 0
The a(2) = 4 nesting digraph edge-sets:
{12,21}
{11,12,21}
{12,21,22}
{11,12,21,22}
Nesting set partitions are
A016098.
MM-numbers of nesting multiset partitions are
A326256.
MM-numbers of unsortable multiset partitions are
A326258.
-
Table[Length[Select[Subsets[Tuples[Range[n],2]],!OrderedQ[Last/@#]&]],{n,4}]
Showing 1-10 of 126 results.
Comments